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Abstract:

For any lattice ordered group G there are two closely associated lattice ordered groups: G R obtained from G by
reversing the order, and Gy, obtained from G by reversing the multiplication. The primary objective of this
study is to demonstrate that, for any lattice ordered group, gR and Gy, are isomorphic. Furthermore, we
investigate the relationships between G, G® and Gy, and identify the identities that hold within each.
Additionally, for any variety V of #group, we establish that the mapping 8: V —VR where V¥ = {QR: Ge
V 1}, is both a lattice and a semigroup automorphism of the set of varieties of lattice ordered groups.
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Introduction
Recall that a lattice ordered group is a group endowed with a lattice structure that is compatible with the group

operations:
a (x \/ y) b = (axb) \/(ayb),
acx \ b = @xb) [\ (ayb)
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In particular, by an #-homomorphism (respectively, #-isomorphism) between two #-group is meant a mapping
which is both a group and a lattice homomorphism (respectively, group and lattice isomorphism). Also, an %-
subgroup means a subgroup which is also a sublattice and an #-ideal means a convex normal #-subgroup. For
any element x of an #-group, we write

xt=xv1l x " =xAl |x|=xtvx’,
where 1 denotes the identity of G.

Varieties of lattice-ordered groups (#-groups) are classes of #-groups defined by a set of algebraic identities .
Below are the primary examples, ordered from smallest to largest in the lattice of varieties :

1. Trivial Variety E: Consists only of the single-element group {e} and is defined by the identity x = e
2. Abelian Variety A: The smallest non-trivial variety, defined by the commutativity identity xy = yx

3. Representable Variety &: Contains all #-groups that can be expressed as a subdirect product
of totally ordered groups .1t is defined by the identity

(x—1(yve)x)A(y—1Ve)=e

4. Normal Valued Variety N: This is the largest proper variety of Zgroups. It is defined by
the Wolfenstein identity :

(xve)(yve)<(yVve)2(xVve)2

5. Scrimger Varieties) Sn: A sequence of varieties that sit between the Abelian and non-Abelian
varieties, often defined through specific wreath products of groups.

6. The Variety of All Z-groups) & G: The largest possible variety, containing every lattice-ordered
group without additional identity constraints .

Notationl1.1. For any Z-group G, we denote by V(G) the variety of #-groups generated by G. We denote by £
the lattice of varieties of #-group.

We shall require the following useful observation.

Lemmal.2. (Martinez, J.1974, p265-284) If U and V. are #-group varieties, an #-group G belongs to UVV if
and only if there exist #-ideals M and V- of G suchthatG / M € U,G /N €V and MNN = {1}.

SECTION 2: DUALITY AND ORDER INVERSION.

Definition 2.1. For any #-group Defining G¥ and G, In % -group theory, these are ways to transform a group

(Q,',S)I

GR (The Opposite I-group): G® = (G,<F) denote the Z-group obtained from G by reversing the order; thus
a <® bifandonly if b < a .keeping the same group operation but reversing the lattice order.

GY (The Dual I-group): Gy =( Gy, <) denote the #-group obtained from G by reversing the multiplication.
Specifically, for any,a, b € G ,the new operation = is defined by a « b = b a. reversing the multiplication
while keeping the original lattice order.

That G® and G, are both #-groups are easily verified. A variety V of #-groups is reversible if V =V®, where VR
={GR:GeV}.

Example: A primary example of reversible varieties of lattice-ordered groups (#-groups) obtained by reversing
the order is the variety of abelian #-groups (A). For any abelian #-group G, the #-group G® (same group
operation, opposite order a <k b < b < a) is also abelian and satisfies the same identities, making A = A R a
reversible variety.

For any #-group (G, <), the reversed structure (G, =) remains an Z-group, but the lattice operations are
swapped:
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New Join: x Vxy = x Ay (The old "meet" becomes the new "join").
New Meet: x Ax y = x V y (The old "join" becomes the new "meet").
Examples:

1-Standard Integers (Z): Original: 5 v 10 = 10.

Reversed: 5 <* 10 actually means 10 < 5 in the old system. Therefore, the "larger" number in the reversed
order is 5.

Calculation: 5 v* 10 = min (5,10) =5.

2-Product Group (Z x Z): Original: (1,5) Vv (2,3) = (2,5).

Reversed: We take the component-wise minimum instead of the maximum.

Calculation: (1,5) V* (2,3) = (min (1,2), min (5,3)) = (1,3).

3-Lexicographic Product (Z x Z): Original: (1,—100) > (0,50).

Reversed: the "positive" cone is flipped. Now, (a,b) >* (0,0) if a < 0,0r if a =0and b < 0.
Calculation: (0,50) is now "larger* than (1, —100).

Definition2.2: A variety V of #groups is reversible if V=VR, where VR={ G R: G €V}.

Other Examples: While A is the most straightforward example, many varieties generated by particular types
of #-groups are not reversible, as GR is not always isomorphic to G in terms of lattice structure, even if they
share the same algebraic group structure.

The reversing of order turns meets into joins (V = A), which is why only specific structures (like abelian or
certain other special classes) are reversible.

Notation 2.3. For any #-group G, we denote the lattice operations in G by VEAR and write, for x € g,
xtR =xVR 1, xR =@AR 1D, |x|R=xTRVvR xR
Note that for x, y in G,
xVRy=xny
and
x AR y=xVy.

Lemma 2.4. (Reilly, N. R. Huss, E. M., 1984, 176-191) The mapping ¢: ¢ — g~* defined by ¢p(g) =gt is
an Z-isomorphism of G¥ onto Gyy.

Proof: For g,h € GR,
p(gh) = (gh)™" = h™'g™' = e(g@e(h)

so that ¢ is a group isomorphism. Since

V-V
=g [\m
-\
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= 0@ \/ o

and similarly,

o [\ 1= 0@ [\ o®

we see that ¢, is also a lattice isomorphism.
Corollary 2.5. (Huss, E. M., 1984) For any #-group G, V(G®) = V(Gy).

In the light of Lemma 2.4, we may work with whichever is the more convenient of G or Gy, in any given
situation.

Although, as we shall see, some of the properties of G and G® can be quite different, some features are invariant
under order reversal.

Lemma 2.6. Let G be an #-group and H < G. Then H is a sublattice (respectively, subgroup, #-subgroup or #-
ideal) of G if and only if 7*® is a sublattice (respectively subgroup, #-subgroup or #-ideal) of G¥.

Furthermore, if 7€ is an Zideal, then (G /H)R is #-isomorphic to GR/FH*®.
The next observation follows easily from the fact that the lattice structure of an #-group is distributive.

Lemma 2.7. (Huss, E. M., 1984) Let F be the free #-group on the non-empty set X. Then any element 4« €

F can be written in the form
e\ Ao
1 ] K

where I, Jand K are finite sets and x;;, € XUX~'U{1} foralli €l,j €],k €K.

Lemma 2.8. (Huss, E. M., 1984) For any #-group G and any « = V; A; [1x x;x € F the following are
equivalent.

(i) The identity 2« = 1 holds in G.

(ii) The identity «® = 1 holds in G~.

(iii) The identity «* = 1 holds in GR.

Proof, clearly g satisfies the law V/; A; [Tx #, = 1 if and only if G* satisfies the law VF A% [T, #;, = 1. But

R R

VAT

ik
-1

A=) ) -

J K

)
~.<x|

-1

- \//\(ﬂ) =1
>V A([T=w) -

I ] K

Thus G satisfies a law «« = 1 if and only if GF satisfies «* = 1, which establishes the equivalence of (i) and (ii).

195 | Journal of Insights in Basic and Applied Sciences



Now the mapping x — x~1 (x € X) of X into F clearly extends to an automorphism ¢, say, of F. Hence the
identity holds in G® if and only if the identity «* ¢ = 1 holds in GX. Since

R

<=Vl
/f\l:[(xijk)* 0
/f\l:[(xijkco)*

1

the equivalence of (ii) and (iii) follows.

Corollary 2.9. (Huss, E. M., 1984) For any variety of #-group V, VR is a variety. Moreover, the following are
equivalent.

(i) V has a basis of identities [1#, = 1,a € A].

(ii) VR has a basis of identities [uX = 1,a € A].

(iii) VR has a basis of identities [ul, = 1,a € A].

This leads naturally to the question of whether or not it is always the case that, V = V® or, equivalently, whether

or not it is the case that for all #-groups G the varieties V (GF) and V (GR) =V (Gy,) are always the same.

3. AN AUTOMORPHISM OF ¥

Since there exist V € & such that V # VR, we consider the basic properties of the mapping V — V=& in this
section.

Notation 3.1. Let 8: V — VRbe the mapping defined by
Vo=V (VEeP,

and let

F={VeL:VR=V}
Theorem 3.2. The mapping 6 is a lattice automorphism of % with the following properties:
(i) 62 is the identity mapping;
(ii) 6 preserves arbitrary joins and meets;
(iii) F is a complete sublattice of %
(iv)foranyV € 4, VVVRe Fand V AVRE F.

Proof: For any word « € F, it is clear that («®)Rso that by Corollary 2.8, we haveV9? =V, for all V € & Thus
(1) holds. In addition, for any #-group G,

GEVO S GreVOZ =V,
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Hence, for any family{V,:a € A} € &,

ge(AVa)H(:)gRe/\Va

GR eV, foralac€dA,

GR eV}, forallae A,

ge/\vf =/\Va 0

and 6 respects arbitrary meets.

Now suppose that G € (VV,)6. Then G® € VV, and there existV, € V(a € A), a subdirect product H of the
V., and an Z-epimorphism y:H — G~
He 1_[ v,

Clearly the same mapping v gives an Z-epimorpbism :H® — gRR where H® € [V, sothat G € V VX).

Thus
(\/(va)e) c \/vf - \/vae

By applying the inverse map and following the same logical steps in reverse order, we have the reverse

containment and therefore
(Vo) =\

and 6 preserves arbitrary joins. This establishes (ii). Since (i) clearly implies that 8 is a bijectioc, it now follows
that 6 is an automorphism.

Property (iii) follows immediately from (ii).

(iv) Forany V € # we have

by (i) and since 6 is an automorphism. Hence

and similarly

V/\VRET

As an immediate consequence of Theorem 3.2(iii) we have the following corollary (Aboujanah, A., et al, 2025).
Corollary 3.3. Let V € Z. Then the following are equivalent:

)V €F;
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(ii) V and VR are comparable.
We now consider how 6 behaves relative to the semigroup structure of Z.

Definition 3.4. For U,V € ¥, we denote by UV the class of all #-groups G for which there exists an #-ideal H
with H € U and G/He V and refer to UV as the product of the varieties UandV. A variety Wis said to be
indecomposable if W= UV implies that either U or V is the trivial variety.

It was observed by (Martinez, J. 1972, 535-553) that Zis a semigroup with respect to the above defined product
of varieties.

Definition 3.5. Let G be an Z-group. If, for every g € G and every convex & -subgroup M that is maximal with
respect to not containing g, M is normal in the convex #-subgroup generated by M and g, then G is said to be
normal valued. The class of all normal valued #-groups will be denoted by V.

Lemma 3.6 (Bigard, A., Keimel, K., & Wolfenstein, S. 1977) The class IV is the variety of #-group defined by
the identity

xv Dy Vvl <V DHx v 1)?
And is the largest varieties of #-group.

Theorem 3.7 (Glass, A. M. W., Holland, W. C., & McCleary, S. H. 1980, 1-20). The set & of proper varieties of
Z-groups other than Vforms a free semigroup on the set of indecomposable varieties.

Theorem 3.8. The mapping @is an automorphism of the semigroup structure of L.
Proof: Since 8is bijective, it remains to show that 8 is a semigroup
homomorphism. Let U,V € L. Then, by Lemma 2.6,
G € (UV)P & GR e UV
Sthere exists an #ideal H of GR with H € Uand GR/H € V
& there exists an Z-ideal K of G (K= HR) with Ke U8 and G/K (=(GR/H)R) € Vo
©Ge (U) (Vo)
Thus(UV)6 = (UB)(VE), as required.

Theorem 3.8 together with the next observation will enable us to make some observations regarding Fas a
subset of the semigroup L.

Proposition 3.9. Let Uef*and let U= U;..... U,where each U;eL (i=1,23,..... ,n) is
indecomposable. Then U € F & U; € F,for all i.

Proof: From Theorem 3.8, we have

where, since 8 is an automorphism of the semigroup £, each U;6 (i = 1,..., n) must be indecomposable. Since the
factorization of varieties in £L* into indecomposable varieties is unique, by Theorem 3.7 it follows that

Thus
UeEF ©UEFfori=1273..... ,n

Corollary 3.10. The complement F¢ of F in & is a prime semigroup ideal (that is, UV € F¢ imples U €
F€orV e FC). In particular, F and F ° are both sub semigroups of Z.
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Proof: By their distinguished positions in the lattice £ it is clear that the trivial variety, the variety of all #-
group, and the variety, V" all lie in F.

Thus F ¢ < L*. The result now follows from theorem 3.8 and proposition 3.9.
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