

Order And multiplication Reversing In Lattice Ordered Groups

Nourah. M. Omar *

Department of Math, Faculty of Arts and Sciences -Alabyar, University of Benghazi,
Alabyar, Libya

عكس الترتيب والضرب في المجموعات المرتبة شبكيًا

نوره محمد صالح *

قسم الرياضيات، كلية الآداب والعلوم - الأبيار، جامعة بنغازي، الأبيار، ليبيا

*Corresponding author: Nourah.omar@uob.edu.ly

Received: November 30, 2025

Accepted: January 30, 2026

Published: February 13, 2026

Copyright: © 2026 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

Abstract:

For any lattice ordered group \mathcal{G} there are two closely associated lattice ordered groups: \mathcal{G}^R , obtained from \mathcal{G} by reversing the order, and \mathcal{G}_W , obtained from \mathcal{G} by reversing the multiplication. The primary objective of this study is to demonstrate that, for any lattice ordered group, \mathcal{G}^R and \mathcal{G}_W , are isomorphic. Furthermore, we investigate the relationships between \mathcal{G} , \mathcal{G}^R and \mathcal{G}_W , and identify the identities that hold within each. Additionally, for any variety \mathcal{V} of \mathcal{L} -group, we establish that the mapping $\theta: \mathcal{V} \rightarrow \mathcal{V}^R$ where $\mathcal{V}^R = \{\mathcal{G}^R: \mathcal{G} \in \mathcal{V}\}$, is both a lattice and a semigroup automorphism of the set of varieties of lattice ordered groups.

Keywords: Order, Revers, Lattice, Automorphism, Varieties.

الملخص

لكل زمرة مرتبة شبكيًا (Lattice-ordered group) \mathcal{G} , توجد زمرتان مرتبتان شبكيًا مرتبطتان بها ارتباطاً وثيقاً: \mathcal{G}^R ، زمرة التي يتم الحصول عليها عن طريق عكس الترتيب، والزمرة \mathcal{G}_W التي يتم الحصول عليها عن طريق عكس عملية الضرب. تتمثل الأهداف الرئيسية لهذه الدراسة في إثبات أن الزمرتين \mathcal{G}^R و \mathcal{G}_W هما زمرتان متماثلتان شبكيًا (Isomorphic lattice-ordered groups) لأي زمرة مرتبة شبكيًا. كما تتناول دراسة العلاقات بين \mathcal{G} ، \mathcal{G}^R ، \mathcal{G}_W ، المتطابقات التي تتحقق في كل منها. بالإضافة إلى ذلك، ثبت لأي تنوع (Variety) \mathcal{V} من الزمر المرتبة شبكيًا، أن التطبيق (Mapping) $\theta: \mathcal{V} \rightarrow \mathcal{V}^R$ حيث $\mathcal{V}^R = \{\mathcal{G}^R: \mathcal{G} \in \mathcal{V}\}$ يمثل تبليانًا ذاتيًّا (Automorphism) لكل من الشبكية ونصف الزمرة (Semigroup) لمجموعة تنوعات الزمر المرتبة شبكيًا.

الكلمات المفتاحية: الترتيب، الانعكاس، الشبكة، التماثل الذاتي، الأصناف.

Introduction

Recall that a lattice ordered group is a group endowed with a lattice structure that is compatible with the group operations:

$$a(x \bigvee y)b = (axb) \bigvee (ayb),$$

$$a(x \bigwedge y)b = (axb) \bigwedge (ayb)$$

In particular, by an \mathcal{L} -homomorphism (respectively, \mathcal{L} -isomorphism) between two \mathcal{L} -group is meant a mapping which is both a group and a lattice homomorphism (respectively, group and lattice isomorphism). Also, an \mathcal{L} -subgroup means a subgroup which is also a sublattice and an \mathcal{L} -ideal means a convex normal \mathcal{L} -subgroup. For any element x of an \mathcal{L} -group, we write

$$x^+ = x \vee 1, \quad x^- = x \wedge 1, \quad |x| = x^+ \vee x^-,$$

where 1 denotes the identity of \mathcal{G} .

Varieties of lattice-ordered groups (\mathcal{L} -groups) are classes of \mathcal{L} -groups defined by a set of algebraic **identities**. Below are the primary examples, ordered from smallest to largest in the lattice of varieties :

1. **Trivial Variety E :** Consists only of the single-element group $\{e\}$ and is defined by the identity $x = e$
2. **Abelian Variety \mathcal{A} :** The smallest non-trivial variety, defined by the commutativity identity $xy = yx$
3. **Representable Variety \mathcal{R} :** Contains all \mathcal{L} -groups that can be expressed as a subdirect product of **totally ordered groups**. It is defined by the identity

$$(x - 1(y \vee e)x) \wedge (y - 1 \vee e) = e$$

4. **Normal Valued Variety \mathcal{N} :** This is the largest proper variety of \mathcal{L} -groups. It is defined by the Wolfenstein identity :

$$(x \vee e)(y \vee e) \leq (y \vee e)2(x \vee e)2$$

5. **Scrimger Varieties) \mathcal{S}_n :** A sequence of varieties that sit between the Abelian and non-Abelian varieties, often defined through specific **wreath products** of groups.
6. **The Variety of All \mathcal{L} -groups) $\mathcal{L} \mathcal{G}$:** The largest possible variety, containing every lattice-ordered group without additional identity constraints .

Notation1.1. For any \mathcal{L} -group \mathcal{G} , we denote by $\mathcal{V}(\mathcal{G})$ the variety of \mathcal{L} -groups generated by \mathcal{G} . We denote by \mathcal{L} the lattice of varieties of \mathcal{L} -group.

We shall require the following useful observation.

Lemma1.2. (Martinez, J.1974, p265-284) If \mathcal{U} and \mathcal{V} . are \mathcal{L} -group varieties, an \mathcal{L} -group \mathcal{G} belongs to $\mathcal{U} \mathcal{V} \mathcal{V}$ if and only if there exist \mathcal{L} -ideals \mathcal{M} and \mathcal{N} of \mathcal{G} such that $\mathcal{G} / \mathcal{M} \in \mathcal{U}, \mathcal{G} / \mathcal{N} \in \mathcal{V}$ and $\mathcal{M} \cap \mathcal{N} = \{1\}$.

SECTION 2: DUALITY AND ORDER INVERSION.

Definition 2.1. For any \mathcal{L} -group Defining \mathcal{G}^R and \mathcal{G}_W In \mathcal{L} -group theory, these are ways to transform a group $(\mathcal{G}, \cdot, \leq)$:

\mathcal{G}^R (The Opposite 1-group): $\mathcal{G}^R = (\mathcal{G}, \leq^R)$ denote the \mathcal{L} -group obtained from \mathcal{G} by reversing the order; thus $a \leq^R b$ if and only if $b \leq a$.keeping the same group operation but **reversing the lattice order**.

\mathcal{G}_W (The Dual 1-group): $\mathcal{G}_W = (\mathcal{G}_W, \leq)$ denote the \mathcal{L} -group obtained from \mathcal{G} by reversing the multiplication. Specifically, for any $a, b \in \mathcal{G}$,the new operation $*$ is defined by $a * b = b a$. **reversing the multiplication** while keeping the original lattice order.

That \mathcal{G}^R and \mathcal{G} , are both \mathcal{L} -groups are easily verified. A variety \mathcal{V} of \mathcal{L} -groups is reversible if $\mathcal{V} = \mathcal{V}^R$, where $\mathcal{V}^R = \{\mathcal{G}^R : \mathcal{G} \in \mathcal{V}\}$.

Example: A primary example of reversible varieties of lattice-ordered groups (\mathcal{L} -groups) obtained by reversing the order is the variety of **abelian \mathcal{L} -groups** (\mathcal{A}). For any abelian \mathcal{L} -group \mathcal{G} , the \mathcal{L} -group \mathcal{G}^R (same group operation, opposite order $a \leq^R b \Leftrightarrow b \leq a$) is also abelian and satisfies the same identities, making $\mathcal{A} = \mathcal{A}^R$ a reversible variety.

For any \mathcal{L} -group (\mathcal{G}, \leq) , the reversed structure (\mathcal{G}, \geq) remains an \mathcal{L} -group, but the lattice operations are swapped:

New Join: $x \vee* y = x \wedge y$ (The old "meet" becomes the new "join").

New Meet: $x \wedge* y = x \vee y$ (The old "join" becomes the new "meet").

Examples:

1-Standard Integers (\mathbb{Z}): *Original:* $5 \vee 10 = 10$.

Reversed: $5 \leq^* 10$ actually means $10 \leq 5$ in the old system. Therefore, the "larger" number in the reversed order is 5.

Calculation: $5 \vee* 10 = \min(5, 10) = 5$.

2-Product Group ($\mathbb{Z} \times \mathbb{Z}$): *Original:* $(1,5) \vee (2,3) = (2,5)$.

Reversed: We take the component-wise minimum instead of the maximum.

Calculation: $(1,5) \vee* (2,3) = (\min(1,2), \min(5,3)) = (1,3)$.

3-Lexicographic Product ($\mathbb{Z} \times \vec{\mathbb{Z}}$): *Original:* $(1, -100) > (0, 50)$.

Reversed: the "positive" cone is flipped. Now, $(a, b) >^* (0,0)$ if $a < 0$, or if $a = 0$ and $b < 0$.

Calculation: $(0, 50)$ is now "larger" than $(1, -100)$.

Definition 2.2: A variety \mathcal{V} of \mathcal{L} -groups is reversible if $\mathcal{V} = \mathcal{V}^R$, where $\mathcal{V}^R = \{G^R : G \in \mathcal{V}\}$.

Other Examples: While \mathcal{A} is the most straightforward example, many varieties generated by particular types of \mathcal{L} -groups are not reversible, as G^R is not always isomorphic to G in terms of lattice structure, even if they share the same algebraic group structure.

The reversing of order turns meets into joins ($\vee \rightarrow \wedge$), which is why only specific structures (like abelian or certain other special classes) are reversible.

Notation 2.3. For any \mathcal{L} -group G , we denote the lattice operations in G^R by $\vee^R \wedge^R$ and write, for $x \in G$,

$$x^{+R} = x \vee^R 1, \quad x^{-R} = (x \wedge^R 1)^{-1}, \quad |x|^R = x^{+R} \vee^R x^{-R}.$$

Note that for x, y in G ,

$$x \vee^R y = x \wedge y$$

and

$$x \wedge^R y = x \vee y.$$

Lemma 2.4. (Reilly, N. R. Huss, E. M., 1984, 176-191) The mapping $\varphi: \mathcal{G} \rightarrow \mathcal{G}^{-1}$ defined by $\varphi(g) = g^{-1}$ is an \mathcal{L} -isomorphism of \mathcal{G}^R onto \mathcal{G}^W .

Proof: For $g, h \in \mathcal{G}^R$,

$$\varphi(gh) = (gh)^{-1} = h^{-1}g^{-1} = \varphi(g)\varphi(h)$$

so that φ is a group isomorphism. Since

$$\begin{aligned} \varphi\left(g \bigvee^R h\right) &= \left(g \bigvee^R h\right)^{-1} \\ &= (g \bigwedge h)^{-1} \\ &= g^{-1} \bigvee h^{-1} \end{aligned}$$

$$= \varphi(g) \bigvee \varphi(h)$$

and similarly,

$$\varphi(g \bigwedge^R h) = \varphi(g) \bigwedge \varphi(h)$$

we see that φ , is also a lattice isomorphism.

Corollary 2.5. (Huss, E. M., 1984) For any \mathcal{L} -group \mathcal{G} , $\mathcal{V}(\mathcal{G}^R) = \mathcal{V}(\mathcal{G}_W)$.

In the light of Lemma 2.4, we may work with whichever is the more convenient of \mathcal{G}^R or \mathcal{G}_W , in any given situation.

Although, as we shall see, some of the properties of \mathcal{G} and \mathcal{G}^R can be quite different, some features are invariant under order reversal.

Lemma 2.6. Let \mathcal{G} be an \mathcal{L} -group and $\mathcal{H} \subseteq \mathcal{G}$. Then \mathcal{H} is a sublattice (respectively, subgroup, \mathcal{L} -subgroup or \mathcal{L} -ideal) of \mathcal{G} if and only if \mathcal{H}^R is a sublattice (respectively subgroup, \mathcal{L} -subgroup or \mathcal{L} -ideal) of \mathcal{G}^R .

Furthermore, if \mathcal{H} is an \mathcal{L} -ideal, then $(\mathcal{G}/\mathcal{H})^R$ is \mathcal{L} -isomorphic to $\mathcal{G}^R/\mathcal{H}^R$.

The next observation follows easily from the fact that the lattice structure of an \mathcal{L} -group is distributive.

Lemma 2.7. (Huss, E. M., 1984) Let \mathcal{F} be the free \mathcal{L} -group on the non-empty set \mathcal{X} . Then any element $u \in \mathcal{F}$ can be written in the form

$$u = \bigvee_I \bigwedge_J \prod_K x_{ijk}$$

where I, J and K are finite sets and $x_{ijk} \in \mathcal{X} \cup \mathcal{X}^{-1} \cup \{1\}$ for all $i \in I, j \in J, k \in K$.

Lemma 2.8. (Huss, E. M., 1984) For any \mathcal{L} -group \mathcal{G} and any $u = \bigvee_I \bigwedge_J \prod_K x_{ijk} \in \mathcal{F}$ the following are equivalent.

(i) The identity $u = 1$ holds in \mathcal{G} .

(ii) The identity $u^R = 1$ holds in \mathcal{G}^R .

(iii) The identity $u^1 = 1$ holds in \mathcal{G}^R .

Proof, clearly \mathcal{G} satisfies the law $\bigvee_I \bigwedge_J \prod_K x_{ijk} = 1$ if and only if \mathcal{G}^R satisfies the law $\bigvee_I^R \bigwedge_J^R \prod_K x_{ijk} = 1$. But

$$\begin{aligned} & \bigvee_I^R \bigwedge_J^R \prod_K x_{ijk} = 1 \\ \Leftrightarrow & \bigvee_I^R \left(\bigwedge_J^R \left(\prod_K x_{ijk} \right)^{-1} \right)^{-1} = 1 \\ \Leftrightarrow & \left(\bigvee_I^R \bigwedge_J^R \left(\prod_K x_{ijk} \right)^{-1} \right)^{-1} = 1 \\ \Leftrightarrow & \bigvee_I^R \bigwedge_J^R \left(\prod_K x_{ijk} \right)^{-1} = 1 \end{aligned}$$

Thus \mathcal{G} satisfies a law $u = 1$ if and only if \mathcal{G}^R satisfies $u^R = 1$, which establishes the equivalence of (i) and (ii).

Now the mapping $x \rightarrow x^{-1}$ ($x \in X$) of \mathcal{X} into \mathcal{F} clearly extends to an automorphism φ , say, of \mathcal{F} . Hence the identity holds in \mathcal{G}^R if and only if the identity $u^R \varphi = 1$ holds in \mathcal{G}^R . Since

$$\begin{aligned} u^R \varphi &= \bigvee_I^R \bigwedge_J^R \left(\prod_K x_{ijk} \right)^{-1} \varphi \\ &= \bigvee_I^R \bigwedge_J^R \prod_K (x_{ijk})^{-1} \varphi \\ &= \bigvee_I^R \bigwedge_J^R \prod_K (x_{ijk} \varphi)^{-1} \\ &= \bigvee_i^R \bigwedge_j^R \prod_k x_{ijk} \end{aligned}$$

the equivalence of (ii) and (iii) follows.

Corollary 2.9. (Huss, E. M., 1984) For any variety of \mathcal{L} -group \mathcal{V} , \mathcal{V}^R is a variety. Moreover, the following are equivalent.

- (i) \mathcal{V} has a basis of identities $[u_\alpha = 1, \alpha \in \mathcal{A}]$.
- (ii) \mathcal{V}^R has a basis of identities $[u_\alpha^R = 1, \alpha \in \mathcal{A}]$.
- (iii) \mathcal{V}^R has a basis of identities $[u_\alpha^1 = 1, \alpha \in \mathcal{A}]$.

This leads naturally to the question of whether or not it is always the case that, $\mathcal{V} = \mathcal{V}^R$ or, equivalently, whether or not it is the case that for all \mathcal{L} -groups \mathcal{G} the varieties $\mathcal{V}(\mathcal{G}^R)$ and $\mathcal{V}(\mathcal{G}^R) = \mathcal{V}(\mathcal{G}_W)$ are always the same.

3. AN AUTOMORPHISM OF \mathcal{L}

Since there exist $\mathcal{V} \in \mathcal{L}$ such that $\mathcal{V} \neq \mathcal{V}^R$, we consider the basic properties of the mapping $\mathcal{V} \rightarrow \mathcal{V}^R$ in this section.

Notation 3.1. Let $\theta: \mathcal{V} \rightarrow \mathcal{V}^R$ be the mapping defined by

$$\mathcal{V} \theta = \mathcal{V}^R \quad (\mathcal{V} \in \mathcal{L}),$$

and let

$$\mathcal{F} = \{\mathcal{V} \in \mathcal{L} : \mathcal{V}^R = \mathcal{V}\}.$$

Theorem 3.2. The mapping θ is a lattice automorphism of \mathcal{L} with the following properties:

- (i) θ^2 is the identity mapping;
- (ii) θ preserves arbitrary joins and meets;
- (iii) \mathcal{F} is a complete sublattice of \mathcal{L} ;
- (iv) for any $\mathcal{V} \in \mathcal{L}$, $\mathcal{V} \vee \mathcal{V}^R \in \mathcal{F}$ and $\mathcal{V} \wedge \mathcal{V}^R \in \mathcal{F}$.

Proof: For any word $u \in \mathcal{F}$, it is clear that $(u^R)^R$ so that by Corollary 2.8, we have $\mathcal{V} \theta^2 = \mathcal{V}$, for all $\mathcal{V} \in \mathcal{L}$. Thus (i) holds. In addition, for any \mathcal{L} -group G ,

$$G \in \mathcal{V} \theta \Leftrightarrow G^R \in \mathcal{V} \theta^2 = \mathcal{V}.$$

Hence, for any family $\{\mathcal{V}_\alpha : \alpha \in \mathcal{A}\} \subseteq \mathcal{L}$,

$$\mathcal{G} \in \left(\bigwedge \mathcal{V}_\alpha \right) \theta \Leftrightarrow \mathcal{G}^R \in \bigwedge \mathcal{V}_\alpha$$

$$\mathcal{G}^R \in \mathcal{V}_\alpha, \quad \text{for all } \alpha \in \mathcal{A},$$

$$\mathcal{G}^R \in \mathcal{V}_\alpha^R, \quad \text{for all } \alpha \in \mathcal{A},$$

$$\mathcal{G} \in \bigwedge \mathcal{V}_\alpha^R = \bigwedge \mathcal{V}_\alpha \theta$$

and θ respects arbitrary meets.

Now suppose that $\mathcal{G} \in (\bigvee \mathcal{V}_\alpha) \theta$. Then $\mathcal{G}^R \in \bigvee \mathcal{V}_\alpha$ and there exist $V_\alpha \in \mathcal{V} (\alpha \in \mathcal{A})$, a subdirect product \mathcal{H} of the V_α , and an \mathcal{L} -epimorphism $\psi: \mathcal{H} \rightarrow \mathcal{G}^R$:

$$\mathcal{H} \subseteq \prod V_\alpha$$

Clearly the same mapping ψ gives an \mathcal{L} -epimorphism $\psi: \mathcal{H}^R \rightarrow \mathcal{G}^R$ where $\mathcal{H}^R \subseteq \prod V_\alpha^R$ so that $\mathcal{G} \in \bigvee \mathcal{V}_\alpha^R$. Thus

$$\left(\bigvee (\mathcal{V}_\alpha) \theta \right) \subseteq \bigvee \mathcal{V}_\alpha^R = \bigvee \mathcal{V}_\alpha \theta$$

By applying the inverse map and following the same logical steps in reverse order, we have the reverse containment and therefore

$$\left(\bigvee (\mathcal{V}_\alpha) \theta \right) = \bigvee \mathcal{V}_\alpha \theta$$

and θ preserves arbitrary joins. This establishes (ii). Since (i) clearly implies that θ is a bijective, it now follows that θ is an automorphism.

Property (iii) follows immediately from (ii).

(iv) For any $\mathcal{V} \in \mathcal{L}$ we have

$$\begin{aligned} (\mathcal{V} \bigvee \mathcal{V}^R) \theta &= (\mathcal{V} \bigvee \mathcal{V} \theta) \theta \\ &= (\mathcal{V} \theta \bigvee \mathcal{V} \theta^2) \\ &= (\mathcal{V} \theta \bigvee \mathcal{V}) \\ &= (\mathcal{V} \bigvee \mathcal{V}^R) \end{aligned}$$

by (i) and since θ is an automorphism. Hence

$$\mathcal{V} \bigvee \mathcal{V}^R \in \mathcal{F}$$

and similarly

$$\mathcal{V} \bigwedge \mathcal{V}^R \in \mathcal{F}$$

As an immediate consequence of Theorem 3.2(iii) we have the following corollary (Aboujanah, A., et al, 2025).

Corollary 3.3. Let $\mathcal{V} \in \mathcal{L}$. Then the following are equivalent:

(i) $\mathcal{V} \in \mathcal{F}$;

(ii) \mathcal{V} and \mathcal{V}^R are comparable.

We now consider how θ behaves relative to the semigroup structure of \mathcal{L} .

Definition 3.4. For $\mathcal{U}, \mathcal{V} \in \mathcal{L}$, we denote by $\mathcal{U}\mathcal{V}$ the class of all \mathcal{L} -groups G for which there exists an \mathcal{L} -ideal H with $H \in \mathcal{U}$ and $G/H \in \mathcal{V}$ and refer to $\mathcal{U}\mathcal{V}$ as the product of the varieties \mathcal{U} and \mathcal{V} . A variety \mathcal{W} is said to be indecomposable if $\mathcal{W} = \mathcal{U}\mathcal{V}$ implies that either \mathcal{U} or \mathcal{V} is the trivial variety.

It was observed by (Martinez, J. 1972, 535-553) that \mathcal{L} is a semigroup with respect to the above defined product of varieties.

Definition 3.5. Let G be an \mathcal{L} -group. If, for every $g \in G$ and every convex \mathcal{L} -subgroup M that is maximal with respect to not containing g , M is normal in the convex \mathcal{L} -subgroup generated by M and g , then G is said to be normal valued. The class of all normal valued \mathcal{L} -groups will be denoted by \mathcal{N} .

Lemma 3.6 (Bigard, A., Keimel, K., & Wolfenstein, S. 1977) The class \mathcal{N} is the variety of \mathcal{L} -group defined by the identity

$$(x \vee 1)(y \vee 1) \leq (y \vee 1)^2(x \vee 1)^2$$

And is the largest varieties of \mathcal{L} -group.

Theorem 3.7 (Glass, A. M. W., Holland, W. C., & McCleary, S. H. 1980, 1-20). The set \mathcal{L} of proper varieties of \mathcal{L} -groups other than \mathcal{N} forms a free semigroup on the set of indecomposable varieties.

Theorem 3.8. The mapping θ is an automorphism of the semigroup structure of \mathcal{L} .

Proof: Since θ is bijective, it remains to show that θ is a semigroup

homomorphism. Let $\mathcal{U}, \mathcal{V} \in \mathcal{L}$. Then, by Lemma 2.6,

$$\begin{aligned} G \in (\mathcal{U}\mathcal{V})\theta &\Leftrightarrow G^R \in \mathcal{U}\mathcal{V} \\ &\Leftrightarrow \text{there exists an } \mathcal{L}\text{-ideal } H \text{ of } G^R \text{ with } H \in \mathcal{U} \text{ and } G^R/H \in \mathcal{V} \\ &\Leftrightarrow \text{there exists an } \mathcal{L}\text{-ideal } K \text{ of } G \text{ (} K = H^R \text{) with } K \in \mathcal{U}\theta \text{ and } G/K \text{ (} \cong (G^R/H)^R \text{) } \in \mathcal{V}\theta \\ &\Leftrightarrow G \in (\mathcal{U}\theta)(\mathcal{V}\theta) \end{aligned}$$

Thus $(\mathcal{U}\mathcal{V})\theta = (\mathcal{U}\theta)(\mathcal{V}\theta)$, as required.

Theorem 3.8 together with the next observation will enable us to make some observations regarding \mathcal{F} as a subset of the semigroup \mathcal{L} .

Proposition 3.9. Let $\mathcal{U} \in \mathcal{L}^*$ and let $\mathcal{U} = \mathcal{U}_1, \dots, \mathcal{U}_n$ where each $\mathcal{U}_i \in \mathcal{L}$ ($i = 1, 2, 3, \dots, n$) is indecomposable. Then $\mathcal{U} \in \mathcal{F} \Leftrightarrow \mathcal{U}_i \in \mathcal{F}$, for all i .

Proof: From Theorem 3.8, we have

$$\begin{aligned} \mathcal{U}\theta &= (\mathcal{U}_1, \dots, \mathcal{U}_n)\theta \\ &= \mathcal{U}_1\theta, \dots, \mathcal{U}_n\theta \end{aligned}$$

where, since θ is an automorphism of the semigroup \mathcal{L} , each $\mathcal{U}_i\theta$ ($i = 1, \dots, n$) must be indecomposable. Since the factorization of varieties in \mathcal{L}^* into indecomposable varieties is unique, by Theorem 3.7 it follows that

Thus

$$\mathcal{U} \in \mathcal{F} \Leftrightarrow \mathcal{U}_i \in \mathcal{F} \text{ for } i = 1, 2, 3, \dots, n$$

Corollary 3.10. The complement \mathcal{F}^c of \mathcal{F} in \mathcal{L} is a prime semigroup ideal (that is, $\mathcal{U}\mathcal{V} \in \mathcal{F}^c$ implies $\mathcal{U} \in \mathcal{F}^c$ or $\mathcal{V} \in \mathcal{F}^c$). In particular, \mathcal{F} and \mathcal{F}^c are both sub semigroups of \mathcal{L} .

Proof: By their distinguished positions in the lattice \mathcal{L} it is clear that the trivial variety, the variety of all \mathcal{L} -group, and the variety, \mathcal{N} all lie in \mathcal{F} .

Thus $\mathcal{F}^c \subseteq \mathcal{L}^*$. The result now follows from theorem 3.8 and proposition 3.9.

Reference

- [1] Bigard, A., Keimel, K., & Wolfenstein, S. (1977). *Groupes et anneaux réticulés* (Lecture Notes in Mathematics, Vol. 608). Springer-Verlag.
- [2] Cooper, C. D. H. (1973). Words which give rise to another group operation for a given group. In *Proceedings of the Second International Conference on Group Theory, Canberra* (pp. 221-225). Springer-Verlag.
- [3] Feil, T. (1980). [Title of dissertation unknown] [Doctoral dissertation, Bowling Green State University].
- [4] Feil, T. (1981). An uncountable tower of 1-group varieties. *Algebra Universalis*, 14, 129-131.
- [5] Glass, A. M. W., Holland, W. C., & McCleary, S. H. (1980). The structure of 1-group varieties. *Algebra Universalis*, 10, 1-20.
- [6] Holland, W. C. (1976). The largest proper variety of lattice ordered groups. *Proceedings of the American Mathematical Society*, 57, 25-28.
- [7] Huss, E. M., (1984). Varieties of lattice ordered groups. Simon Fraser university.
- [8] Martinez, J. (1972). Free products in varieties of lattice ordered groups. *Czechoslovak Mathematical Journal*, 22(97), 535-553.
- [9] Martinez, J. (1974). Varieties of lattice ordered groups. *Mathematische Zeitschrift*, 137, 265-284.
- [10] Medvedev, N. (1977). Lattices of varieties of lattice ordered groups and Lie groups. *Algebra i Logika*, 16, 40-45. [In Russian].
- [11] OMAR, N. M. (2025). The connection between revisable varieties of 1-groups and m-groups. Knowledge crown Jornal.9-19.
- [12] Reilly, N. R. (1981). A subsemilattice of the lattice of varieties of lattice ordered groups. *Canadian Journal of Mathematics*, 33, 1309-1318.
- [13] Reilly, N. R. Huss. E. M., (1984). On reversing ordered of lattice ordered group. Academic press,nk. 176-191.
- [14] Scrimger, E. B. (1975). A large class of small varieties of lattice ordered groups. *Proceedings of the American Mathematical Society*, 51, 301-306.
- [15] Aboujanah, A., Khalifa, R. A., & Asbeetah, R. A. (2025). An Analytical Study: The Mathematical Relationship Between Hamming Theory for Error Correction and Representation in Classical Spaces with Applications of Supervised Machine Learning. *Journal of Insights in Basic and Applied Sciences*, 49-61.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of **JIBAS** and/or the editor(s). **JIBAS** and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.