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Abstract:  

For any lattice ordered group 𝒢 there are two closely associated lattice ordered groups: 𝒢𝑅 , obtained from 𝒢 by 

reversing the order, and 𝒢𝑊 , obtained from 𝒢 by reversing the multiplication. The primary objective of this 

study is to demonstrate that, for any lattice ordered group, 𝒢𝑅  and 𝒢𝑊 , are isomorphic. Furthermore, we 

investigate the relationships between 𝒢, 𝒢𝑅  and 𝒢𝑊 , and identify the identities that hold within each. 

Additionally, for any variety 𝒱 of ℒ-group, we establish that the mapping 𝜃: 𝒱 →𝒱𝑅   where 𝒱𝑅  = {𝒢𝑅 : 𝒢 ∈ 

𝒱 }, is both a lattice and a semigroup automorphism of the set of varieties of lattice ordered groups.  
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 الملخص 

 𝒢𝑅توجد زمرتان مرتبتان شبكيا  مرتبطتان بها ارتباطا  وثيقا :    ،𝒢 (Lattice-ordered group) زمرة مرتبة شبكيا   لكل

عكس عملية  يتم الحصول عليها عن طريق  التي  𝒢𝑊والزمرة عكس الترتيب،   التي يتم الحصول عليها عن طريق الزمرة

الزمرتين ب.الضر أن  إثبات  في  الدراسة  لهذه  الرئيسية  الأهداف  متماثلتان  هما 𝒢𝑊و  𝒢𝑅 تتمثل  زمرتان 

بين (Isomorphic lattice-ordered groups) شبكيا   العلاقات  دراسة  نتناول  كما  شبكيا .  مرتبة  زمرة  ,𝒢) لأي  𝒢𝑅 

𝒢𝑊  ،)تنوع )  المتطابقات التي تتحقق في كل منها. بالإضافة إلى ذلك، نثبت لأي(Variety  𝒱    ، من الزمر المرتبة شبكيا

التطبيق )تبيان ا   يمثل𝒱𝑅= {𝒢𝑅: 𝒢 ∈ 𝒱 }  حيث 𝜃: 𝒱 →𝒱𝑅 (Mapping) أن  لكل من  Automorphism) ذاتي ا 

   .لمجموعة تنوعات الزمر المرتبة شبكيا   (Semigroup) الشبكية ونصف الزمرة

 

 الترتيب، الانعكاس، الشبكة، التماثل الذاتي، الأصناف. الكلمات المفتاحية:
Introduction 

Recall that a lattice ordered group is a group endowed with a lattice structure that is compatible with the group 

operations:  

𝑎 (𝑥 ⋁𝑦)𝑏 = (𝑎𝑥𝑏) ⋁(𝑎𝑦𝑏), 

𝑎(𝑥 ⋀  𝑦)𝑏 = (𝑎𝑥𝑏) ⋀(𝑎𝑦𝑏)  
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In particular, by an ℒ-homomorphism (respectively, ℒ-isomorphism) between two ℒ-group is meant a mapping 

which is both a group and a lattice homomorphism (respectively, group and lattice isomorphism). Also, an ℒ-

subgroup means a subgroup which is also a sublattice and an ℒ-ideal means a convex normal ℒ-subgroup. For 

any element x of an ℒ-group, we write 

𝑥+ = 𝑥 ∨ 1,    𝑥− = 𝑥 ∧ 1,    |𝑥| = 𝑥+ ∨ 𝑥−, 

where 1 denotes the identity of 𝒢. 

Varieties of lattice-ordered groups )ℒ-groups) are classes of ℒ-groups defined by a set of algebraic identities  .

Below are the primary examples, ordered from smallest to largest in the lattice of varieties :  

1. Trivial Variety 𝐸: Consists only of the single-element group {𝑒} and is defined by the identity 𝑥 = 𝑒 

2. Abelian Variety 𝒜: The smallest non-trivial variety, defined by the commutativity identity  𝑦𝑥=𝑥𝑦  

3. Representable Variety  ℛ: Contains all ℒ-groups that can be expressed as a subdirect product 

of totally ordered groups .It is defined by the identity  

(𝑥 − 1(𝑦 ∨ 𝑒)𝑥) ∧ (𝑦 − 1 ∨ 𝑒) = 𝑒 

4. Normal Valued Variety  𝒩: This is the largest proper variety of ℒ-groups. It is defined by 

the Wolfenstein identity :  

(𝑥 ∨ 𝑒)(𝑦 ∨ 𝑒) ≤ (𝑦 ∨ 𝑒)2(𝑥 ∨ 𝑒)2 

5. Scrimger Varieties   ( 𝒮𝑛: A sequence of varieties that sit between the Abelian and non-Abelian 

varieties, often defined through specific wreath products of groups. 

6. The Variety of All ℒ-groups   ( ℒ 𝒢: The largest possible variety, containing every lattice-ordered 

group without additional identity constraints .  

Notation1.1. For any ℒ-group 𝒢, we denote by 𝒱(𝒢) the variety of ℒ-groups generated by 𝒢. We denote by ℒ 

the lattice of varieties of ℒ-group.  

We shall require the following useful observation. 

Lemma1.2. (Martinez, J.1974, p265-284) If 𝒰 and 𝒱. are ℒ-group varieties, an ℒ-group 𝒢 belongs to 𝒰⋁𝒱 if 
and only if there exist ℒ-ideals ℳ and 𝒩 of 𝒢 such that 𝒢 ∕ ℳ ∈ 𝒰, 𝒢 ∕ 𝒩 ∈ 𝒱 𝑎𝑛𝑑 ℳ⋂𝒩 = {1}. 

SECTION 2: DUALITY AND ORDER INVERSION. 

Definition 2.1. For any ℒ-group Defining 𝒢𝑅 and   𝒢𝒲 In ℒ -group theory, these are ways to transform a group 

(𝒢,⋅,≤):  

𝐺𝑅 (The Opposite l-group): 𝒢𝑅 = (𝒢,≤𝑅) denote the ℒ-group obtained from  𝒢 by reversing the order; thus 

𝑎 ≤𝑅  𝑏 if and only if 𝑏 ≤ 𝑎 .keeping the same group operation but reversing the lattice order.  

𝐺𝑊 (The Dual l-group):  𝒢𝒲=( 𝒢𝒲, ≤) denote the ℒ-group obtained from 𝒢 by reversing the multiplication. 

Specifically, for any,𝑎, 𝑏 ∈ 𝒢 ,the new operation ∗ is defined by 𝑎 ∗  𝑏 =  𝑏 𝑎. reversing the multiplication 

while keeping the original lattice order. 

That 𝒢𝑅 and 𝒢, are both ℒ-groups are easily verified. A variety 𝒱 of ℒ-groups is reversible if 𝒱 =𝒱𝑅, where 𝒱𝑅 

= {𝒢𝑅: 𝒢 ∈ 𝒱 }. 

Example: A primary example of reversible varieties of lattice-ordered groups (ℒ-groups) obtained by reversing 

the order is the variety of abelian ℒ-groups (𝒜). For any abelian ℒ-group 𝐺, the  ℒ-group 𝒢𝑅 (same group 

operation, opposite order 𝑎 ≤𝑅 𝑏 ⟺ 𝑏 ≤ 𝑎) is also abelian and satisfies the same identities, making 𝒜 = 𝒜 𝑅 a 

reversible variety.  

For any ℒ-group (𝐺, ≤), the reversed structure (𝐺, ≥) remains an ℒ-group, but the lattice operations are 

swapped:  
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New Join:  𝑥 ∨∗ 𝑦 = 𝑥 ∧ 𝑦 (The old "meet" becomes the new "join"). 

New Meet: 𝑥 ∧∗ 𝑦 = 𝑥 ∨ 𝑦 (The old "join" becomes the new "meet").  

Examples: 

1-Standard Integers (ℤ): Original: 5 ∨ 10 = 10. 

Reversed: 5 ≤∗ 10  actually means 10 ≤ 5  in the old system. Therefore, the "larger" number in the reversed 

order is 5. 

Calculation: 5 ∨∗ 10 = 𝑚𝑖𝑛 (5,10)  = 5. 

2-Product Group (ℤ × ℤ): Original: (1,5)  ∨  (2,3)  =  (2,5).  

Reversed: We take the component-wise minimum instead of the maximum.  

Calculation: (1,5)  ∨∗ (2,3)  =  (𝑚𝑖𝑛 (1,2),𝑚𝑖𝑛 (5,3))  =  (1,3). 

3-Lexicographic Product (ℤ × ℤ⃗⃗ ): Original: (1, −100) >  (0,50).  

Reversed:  the "positive" cone is flipped. Now, (𝑎, 𝑏) >∗ (0,0) 𝑖𝑓 𝑎 < 0, 𝑜𝑟 𝑖𝑓 𝑎 = 0 𝑎𝑛𝑑 𝑏 < 0. 

Calculation: (0,50) is now "larger" than (1, −100).  

Definition2.2: A variety 𝒱 of ℒ-groups is reversible if 𝒱=𝒱𝑅, where 𝒱𝑅={ 𝒢 𝑅∶  𝒢 ∈𝑉}. 

Other Examples: While 𝒜 is the most straightforward example, many varieties generated by particular types 

of ℒ-groups are not reversible, as 𝒢𝑅 is not always isomorphic to 𝒢 in terms of lattice structure, even if they 

share the same algebraic group structure. 

The reversing of order turns meets into joins (⋁ → ⋀), which is why only specific structures (like abelian or 

certain other special classes) are reversible.  

Notation 2.3. For any ℒ-group 𝒢, we denote the lattice operations in 𝒢𝑅  by  ∨𝑅∧𝑅   and write, for 𝑥 ∈  𝒢, 

𝑥+𝑅   = 𝑥 ∨𝑅  1,  𝑥−𝑅   = (𝑥 ∧𝑅  1)−1 ,       |𝑥|𝑅 = 𝑥+𝑅 ∨𝑅 𝑥−𝑅. 

Note that for x, y in 𝒢, 

𝑥 ∨𝑅 𝑦 = 𝑥 ∧ 𝑦 

 𝑎𝑛𝑑 

 𝑥 ∧𝑅 𝑦 = 𝑥 ∨ 𝑦. 

Lemma 2.4. (Reilly, N. R. Huss, E. M., 1984, 176-191) The mapping 𝜑: ℊ → ℊ−1 defined by 𝜑( ℊ) = ℊ−1 is 

an ℒ-isomorphism of 𝒢𝑅 onto 𝒢𝒲 . 

Proof: For 𝑔, ℎ ∈  𝒢𝑅, 

𝜑(𝑔ℎ)  =  (𝑔ℎ)−1  =  ℎ−1𝑔−1 =  𝜑(𝑔)𝜑(ℎ)  

so that 𝜑 is a group isomorphism. Since 

𝜑 (𝑔⋁ ℎ
ℛ

 
) = (𝑔⋁ ℎ

ℛ

 
)

−1

 

 =  (𝑔 ⋀ℎ )−1 

= 𝑔−1 ⋁ℎ−1
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=  𝜑(𝑔)⋁𝜑(ℎ) 

and similarly, 

𝜑(𝑔 ⋀ ℎ
𝑅 

 

 

) = 𝜑(𝑔)⋀𝜑(ℎ)   

we see that 𝜑, is also a lattice isomorphism. 

Corollary 2.5. (Huss, E. M., 1984) For any ℒ-group 𝒢, 𝒱(𝒢𝑅) = 𝒱(𝒢𝒲). 

In the light of Lemma 2.4, we may work with whichever is the more convenient of 𝒢𝑅  or 𝒢𝒲, in any given 

situation. 

Although, as we shall see, some of the properties of 𝒢 and 𝒢𝑅 can be quite different, some features are invariant 

under order reversal. 

Lemma 2.6. Let 𝒢 be an ℒ-group and ℋ ⊆ 𝒢. Then ℋ is a sublattice (respectively, subgroup, ℒ-subgroup or ℒ-

ideal) of 𝒢 if and only if ℋℛ is a sublattice (respectively subgroup, ℒ-subgroup or ℒ-ideal) of 𝒢𝑅. 

Furthermore, if ℋ is an ℒ-ideal, then (𝒢 /ℋ)R is ℒ-isomorphic to 𝒢𝑅/ℋℛ. 

The next observation follows easily from the fact that the lattice structure of an ℒ-group is distributive. 

Lemma 2.7. (Huss, E. M., 1984) Let ℱ be the free ℒ-group on the non-empty set 𝒳. Then any element 𝓊 ∈
ℱ can be written in the form 

𝓊 = ⋁⋀∏𝓍𝑖𝑗𝑘

𝐾𝐽𝐼

 

where I, J and K are finite sets and 𝓍𝑖𝑗𝑘  ∈ 𝒳⋃𝒳−1⋃{1} for all 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾. 

Lemma 2.8.  (Huss, E. M., 1984) For any ℒ-group 𝒢 and any 𝓊 = ⋁ ⋀ ∏ 𝓍𝑖𝑗𝑘𝐾𝐽𝐼  ∈ ℱ the following are 

equivalent. 

(i) The identity 𝓊 =  1 holds in 𝒢. 

(ii) The identity 𝓊𝑅 = 1 holds in 𝒢𝑅. 

(iii) The identity 𝓊1 = 1 holds in 𝒢𝑅. 

Proof, clearly 𝒢 satisfies the law ⋁ ⋀ ∏ 𝓍𝑖𝑗𝑘𝐾𝐽𝐼  = 1 if and only if 𝒢𝑅 satisfies the law ⋁ ⋀ ∏ 𝓍𝑖𝑗𝑘𝑘
𝑅
𝑗

𝑅
𝑖 = 1. But 

⋁⋀∏𝓍𝑖𝑗𝑘

𝑘

𝑅

𝑗

𝑅

𝑖

= 1 

⇔ ⋁(⋀(∏𝓍𝑖𝑗𝑘

𝐾

)

−1𝑅

𝐽

)

𝑅

𝐼

−1

= 1 

⇔ (⋁⋀(∏𝓍𝑖𝑗𝑘

𝐾

)

−1𝑅

𝐽

𝑅

𝐼

)

−1

= 1 

⇔ ⋁⋀(∏𝓍𝑖𝑗𝑘

𝐾

)

−1

= 1

𝑅

𝐽

𝑅

𝐼

 

Thus 𝒢 satisfies a law 𝓊 =  1 if and only if 𝒢𝑅 satisfies 𝓊𝑅 = 1, which establishes the equivalence of (i) and (ii). 
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Now the mapping 𝑥 ⟶ 𝑥−1 (𝑥 ∈  𝑋) of 𝒳 into ℱ clearly extends to an automorphism 𝜑,  say, of ℱ. Hence the 

identity holds in 𝒢𝑅 if and only if the identity 𝓊𝑅  𝜑 = 1 holds in 𝒢𝑅. Since 

   

𝓊𝑅  𝜑 = ⋁⋀(∏𝓍𝑖𝑗𝑘

𝐾

)

−1𝑅

𝐽

𝑅

𝐼

𝜑 

= ⋁⋀∏(𝓍𝑖𝑗𝑘)
−1

𝐾

𝑅

𝐽

𝑅

𝐼

 𝜑 

= ⋁⋀∏(𝓍𝑖𝑗𝑘𝜑)
−1

𝐾

𝑅

𝐽

𝑅

𝐼

 

= ⋁⋀∏𝓍𝑖𝑗𝑘

𝑘

𝑅

𝑗

𝑅

𝑖

 

the equivalence of (ii) and (iii) follows. 

Corollary 2.9. (Huss, E. M., 1984) For any variety of ℒ-group 𝒱, 𝒱𝑅 is a variety. Moreover, the following are 

equivalent. 

(i) 𝒱 has a basis of identities [𝓊𝛼  =  1, 𝛼 ∈  𝒜]. 

(ii)  𝒱𝑅 has a basis of identities [𝓊𝛼
ℛ  =  1, 𝛼 ∈  𝒜]. 

(iii)  𝒱𝑅 has a basis of identities [𝓊𝛼
1  =  1, 𝛼 ∈  𝒜]. 

This leads naturally to the question of whether or not it is always the case that, 𝒱 = 𝒱𝑅 or, equivalently, whether 

or not it is the case that for all ℒ-groups 𝒢 the varieties 𝒱 (𝒢𝑅) and 𝒱 (𝒢R)  = 𝒱 (𝒢𝒲)   are always the same.  

3. AN AUTOMORPHISM OF ℒ 

Since there exist 𝒱 ∈ ℒ such that 𝒱 ≠ 𝒱𝑅, we consider the basic properties of the mapping 𝒱 → 𝒱𝑅 in this 

section. 

Notation 3.1. Let 𝜃: 𝒱 → 𝒱𝑅 be the mapping defined by 

𝒱 𝜃 = 𝒱𝑅    ( 𝒱 ∈ ℒ),  

and let 

ℱ = {𝒱 ∈ ℒ ∶ 𝒱R = 𝒱}. 

Theorem 3.2. The mapping 𝜃 is a lattice automorphism of ℒ with the following properties: 

(i) 𝜃2 is the identity mapping; 

(ii) 𝜃 preserves arbitrary joins and meets; 

(iii) ℱ is a complete sublattice of ℒ; 

(iv) for any 𝒱 ∈ ℒ, 𝒱 ⋁𝒱𝑅 ∈ ℱ and  𝒱 ∧ 𝒱𝑅 ∈ ℱ. 

Proof: For any word 𝓊 ∈ ℱ, it is clear that (𝓊𝑅)𝑅so that by Corollary 2.8, we have𝒱𝜃2 = 𝒱, for all 𝒱 ∈ ℒ. Thus 

(i) holds. In addition, for any ℒ-group G, 

𝒢 ∈ 𝒱 𝜃 ⇔  𝒢𝑅∈ 𝒱𝜃2 = 𝒱. 
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Hence, for any family{𝒱𝛼: 𝛼 ∈ 𝒜} ⊆ ℒ,   

𝒢 ∈ (⋀𝒱𝛼) 𝜃 ⇔ 𝒢ℛ ∈ ⋀𝒱𝛼  

𝒢ℛ ∈ 𝒱𝛼,    for all 𝛼 ∈ 𝒜, 

𝒢ℛ ∈ 𝒱𝛼
ℛ ,    for all 𝛼 ∈ 𝒜, 

𝒢 ∈ ⋀𝒱𝛼
ℛ  = ⋀𝒱𝛼

𝛼
𝜃 

and 𝜃 respects arbitrary meets. 

Now suppose that 𝒢 ∈ (⋁𝒱𝛼)𝜃. Then 𝒢ℛ ∈ ⋁𝒱𝛼  and there exist𝑉𝛼 ∈ 𝒱(𝛼 ∈ 𝒜), a subdirect product ℋ of the 

𝑉𝛼 , and an ℒ-epimorphism 𝜓:ℋ → 𝒢𝑅:  

ℋ ⊆ ∏𝑉𝛼  

Clearly the same mapping 𝜓 gives an ℒ-epimorpbism 𝜓:ℋℛ → 𝒢ℛℛ
 where ℋℛ ⊆ ∏𝑉𝛼  so that 𝒢 ∈ ⋁ 𝒱𝛼

ℛ). 

Thus 

(⋁(𝒱𝛼)𝜃) ⊆ ⋁𝒱𝛼
ℛ = ⋁𝒱𝛼𝜃 

By applying the inverse map and following the same logical steps in reverse order, we have the reverse 

containment and therefore 

(⋁(𝒱𝛼)𝜃) = ⋁𝒱𝛼𝜃 

 and 𝜃 preserves arbitrary joins. This establishes (ii). Since (i) clearly implies that 𝜃 is a bijectioc, it now follows 

that 𝜃 is an automorphism. 

Property (iii) follows immediately from (ii). 

(iv) For any 𝒱 ∈ ℒ  we have 

(𝒱 ⋁𝒱ℛ) 𝜃 = (𝒱 ⋁𝒱𝜃)𝜃 

= (𝒱𝜃 ⋁𝒱𝜃2) 

= (𝒱𝜃 ⋁𝒱) 

= (𝒱 ⋁𝒱ℛ) 

by (i) and since 𝜃 is an automorphism. Hence 

𝒱 ⋁𝒱ℛ ∈ ℱ 

and similarly 

𝒱 ⋀𝒱ℛ ∈ ℱ 

As an immediate consequence of Theorem 3.2(iii) we have the following corollary (Aboujanah, A., et al, 2025). 

Corollary 3.3. Let 𝒱 ∈ ℒ. Then the following are equivalent: 

(i) 𝒱 ∈ ℱ; 
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(ii) 𝒱 𝑎𝑛𝑑 𝒱𝑅  are comparable. 

We now consider how 𝜃 behaves relative to the semigroup structure of ℒ. 

Definition 3.4. For 𝒰,𝒱 ∈ ℒ, we denote by 𝒰𝒱 the class of all ℒ-groups G for which there exists an ℒ-ideal H 

with H ∈ 𝒰 and G/H∈ 𝒱 and refer to 𝒰𝒱 as the product of the varieties 𝒰and𝒱. A variety 𝒲is said to be 

indecomposable if 𝒲= 𝒰𝒱 implies that either 𝒰 or 𝒱 is the trivial variety. 

It was observed by (Martinez, J. 1972, 535-553) that ℒ is a semigroup with respect to the above defined product 

of varieties. 

Definition 3.5. Let G be an ℒ-group. If, for every g ∈ G and every convex ℒ -subgroup M that is maximal with 

respect to not containing g, M is normal in the convex ℒ-subgroup generated by M and g, then G is said to be 

normal valued. The class of all normal valued ℒ-groups will be denoted by 𝒩. 

Lemma 3.6 (Bigard, A., Keimel, K., & Wolfenstein, S. 1977) The class 𝒩 is the variety of ℒ-group defined by 

the identity 

(𝑥 ∨  1)(𝑦 ∨  1)  ≤  (𝑦 ∨  1)2(𝑥 ∨  1)2 

And is the largest varieties of ℒ-group. 

Theorem 3.7 (Glass, A. M. W., Holland, W. C., & McCleary, S. H. 1980, 1-20). The set ℒ of proper varieties of 

ℒ-groups other than 𝒩forms a free semigroup on the set of indecomposable varieties. 

Theorem 3.8. The mapping 𝜃is an automorphism of the semigroup structure of ℒ. 

Proof: Since 𝜃is bijective, it remains to show that 𝜃 is a semigroup 

homomorphism. Let 𝒰, 𝒱 ∈ ℒ. Then, by Lemma 2.6, 

𝐺 ∈ (𝒰𝒱)𝜃 ⇔ 𝐺𝑅 ∈ 𝒰𝒱 

⇔there exists an ℒ-ideal H of GR with 𝐻 ∈ 𝒰and GR/H ∈ 𝒱 

⇔ there exists an ℒ-ideal K of G (K= HR) with K∈ 𝒰𝜃 and G/K (≅(GR/H)R) ∈ 𝒱𝜃 

⇔G∈ (𝒰𝜃)(𝒱𝜃)  

Thus(𝒰𝒱)𝜃 = (𝒰𝜃)(𝒱𝜃), as required. 

Theorem 3.8 together with the next observation will enable us to make some observations regarding ℱas a 

subset of the semigroup ℒ. 

Proposition 3.9. Let 𝒰 ∈ ℒ⋆and let 𝒰 = 𝒰1. . . . . 𝒰𝑛where each 𝒰𝑖 ∈ ℒ  (𝑖 = 1, 2, 3, . . . . . , 𝑛) is 

indecomposable. Then 𝒰 ∈ ℱ  ⇔ 𝒰𝑖 ∈ ℱ,for all 𝑖. 

Proof: From Theorem 3.8, we have 

𝒰𝜃 =  (𝒰1, . . . . . , 𝒰𝑛)𝜃 

= 𝒰1𝜃, . . . . . , 𝒰𝑛𝜃 

where, since 𝜃 is an automorphism of the semigroup ℒ, each 𝒰𝑖𝜃 (i = l,..., n) must be indecomposable. Since the 

factorization of varieties in ℒ* into indecomposable varieties is unique, by Theorem 3.7 it follows that 

Thus 

𝒰 ∈ ℱ  ⇔ 𝒰𝑖 ∈ ℱ 𝑓𝑜𝑟 𝑖 = 1, 2, 3, . . . . . , 𝑛 

Corollary 3.10. The complement ℱc of ℱ in ℒ is a prime semigroup ideal (that is,𝒰𝒱 ∈ ℱ𝑐 𝑖𝑚𝑝𝑙𝑒𝑠  𝒰 ∈
 ℱ𝑐  𝑜𝑟 𝒱 ∈  ℱ𝑐). In particular, ℱ and ℱ c are both sub semigroups of ℒ. 
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Proof: By their distinguished positions in the lattice ℒ it is clear that the trivial variety, the variety of all ℒ-

group, and the variety,𝒩 all lie in ℱ. 

Thus ℱ c ⊆ ℒ*. The result now follows from theorem 3.8 and proposition 3.9. 
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