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Abstract:  

This research proposes a novel hybrid optimization algorithm that integrates Particle Swarm Optimization (PSO) 

with the Filled Function Method (FFM) to address the persistent challenges of premature convergence and local 

optima entrapment in high-dimensional, multimodal optimization problems. The hybrid PSO–FFM algorithm 

incorporates a one parameter filled function that dynamically modifies the search landscape when stagnation is 

detected, enabling systematic escape from deceptive basins while maintaining PSO’s exploration-exploitation 

balance. Experimental evaluation across eight benchmark functions (Sphere, Rosenbrock, Rastrigin, Griewank, 

Ackley, Schwefel, Zakharov, and Alpine1) demonstrates significant performance improvements, with the hybrid 

algorithm achieving up to 100% enhancement over standard PSO in several cases. The proposed method offers a 

robust framework for complex optimization tasks, particularly in engineering and computational applications 

where traditional metaheuristics struggle with complex search landscapes. 

Keywords: Particle Swarm Optimization, Filled Function Method, Hybrid Algorithms, Global Optimization, 

Metaheuristics, Multimodal Optimization. 

 الملخص 

بين خوارزمية   تدمج  جديدة  تحسين هجينة  البحث خوارزمية  هذا  الجسيماتتقترح   Particle Swarm)  تحسين سرب 

Optimization – PSO)   طريقة الدالة المملوءةو   (Filled Function Method – FFM)  لمعالجة التحديات المستمرة

في   المبكرالمتمثلة  في    التقارب  المحلوالانحصار  الدنيا  القمم  يةالقيم  ومتعددة  الأبعاد  عالية  التحسين  مسائل   .في 

الهجينة دالة مملوءة أحادية المعامل تقوم بتعديل فضاء البحث ديناميكياً عند اكتشاف حالة   PSO–FFM تتضمن خوارزمية

المنهجي من الأحواض الخادعة مع الحفاظ على توازن الاستكشاف الخروج  الذي تتم–الركود، مما يتيح  يز به  الاستغلال 

معيارية,أ  .PSOخوارزمية دوال  ثماني  عبر  التجريبية  التقييمات  ، Sphere  ،Rosenbrock  ،Rastrigin) ظهرت 

Griewank  ،Ackley  ،Schwefel  ،Zakharovو  ،Alpine1)   الخوارزمية حققت  حيث  الأداء،  في  ملحوظاً  تحسناً 

إلى وصل  تحسناً  بخوارزمية %100 الهجينة  حالات PSO مقارنة  عدة  في   .القياسية 

وتوفر الطريقة المقترحة إطاراً قوياً لمعالجة مسائل التحسين المعقدة، لا سيما في التطبيقات الهندسية والحاسوبية التي تواجه  

 .فيها الخوارزميات التطورية التقليدية صعوبة في التعامل مع فضاءات البحث المعقدة
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العالمية، الخوارزميات   الامثليةات، طريقة الدالة المملوءة، الخوارزميات الهجينة،  تحسين سرب الجسيم  الكلمات المفتاحية:

 .استدلالية(، التحسين متعدد القمم-التقريبية )الميتا
1. Introduction 

Optimization techniques play a critical role in engineering, scientific computing, and decision-making processes, 

providing systematic approaches for identifying optimal solutions under specified constraints. Among 

metaheuristic methods, Particle Swarm Optimization (PSO) has emerged as a prominent approach due to its 

conceptual simplicity, adaptability, and effective balance between exploration and exploitation. Inspired by 

collective behaviors in biological systems, PSO employs a population of particles that iteratively adjust their 

positions based on individual and collective knowledge, making it particularly suitable for continuous, nonlinear 

optimization problems. 

Despite its advantages, standard PSO exhibits notable limitations when applied to complex optimization scenarios, 

particularly those characterized by high dimensionality, multimodality, or deceptive objective functions. The 

algorithm is prone to premature convergence, stagnation in local optima, and reduced effectiveness as problem 

complexity increases. These challenges stem from PSO’s inherent difficulty in maintaining population diversity 

and its sensitivity to parameter settings, especially in rugged search landscapes where the global optimum may be 

separated by numerous local optima. 

To address these limitations, this paper introduces a novel hybridization approach that combines PSO with the 

Filled Function Method (FFM), a deterministic technique designed specifically for escaping local optima. The 

resulting PSO–FFM algorithm integrates the global search capabilities of PSO with the landscape modification 

properties of FFM, creating a synergistic optimization framework that enhances both exploration and exploitation 

capabilities. 

1.1. Related Work 

Among the most prominent approaches in this context is the hybridization of PSO with Genetic Algorithms (GA). 

Researchers have proposed different strategies for this hybridization, including reciprocal integration, sequential 

application, or embedding GA operators within the PSO framework [1, 2, 3]. In 1998, Angeline introduced the 

first concept of hybridization between algorithms by combining Particle Swarm Optimization (PSO) with Genetic 

Algorithms (GA). Angeline incorporated the principle of selection by proposing a mechanism to eliminate the 

least effective solutions—either by discarding them or reinitializing them. This approach aimed to enhance 

solution quality, achieve better optimization results, and reduce the likelihood of falling into local optima [4]. 

In 2001, Krink, Lovbjerg, Rasmussen proposed the integration of additional mechanisms– such as Genetic 

Algorithms (GA)–into the Particle Swarm Optimization (PSO) frame- work. This hybrid model yielded improved 

solution quality and performance compared to using each algorithm independently [5]. 

For instance, in 2002 Robinson, J., Sinton, S., Rahmat-Samii combined PSO with GA, where PSO contributed to 

enhancing the search for promising solutions, while GA improved the accuracy in reaching feasible solutions. 

This synergy resulted in highly precise and high-quality outcomes [6]. In 2003 Shi, X., Lu, Y., Zhou, C., Lee, H., 

Lin, W., Liang generated the best particles after several iterations and reinitialized them for the second algorithm, 

while random generation was employed to fill the remaining population [7]. 

In 2007, Shelokar et al. proposed the first hybrid algorithm between PSO and ACO, which they called PSACO. 

PSO generates and processes the initial values, then inputs them to ACO. The algorithm proved its efficiency on 

non-convex functions and achieved a remarkable balance between exploration and exploitation [8]. 

In 2009, Kaveh and Talatahari developed a hybrid model of three algorithms, using PSO with negative clustering 

(PSOPC, ACO, HS). This hybridization was effective in optimizing network structures with discrete variables [9]. 

In 2010, Niknam and Amiri presented a hybrid model combining adaptive fuzzy PSO with ACO and K-Means. 

They dynamically guided ACO using Q-Learning [10]. In 2011, Chen et al. proposed a hybrid framework that 

integrates ACO-PSO with GA and SA, aiming to enhance global search efficiency and improve the quality of 

solutions [11]. In the same year, Xiong and Wang introduced the Two-stage ACO- 

PSO Clustering (TAPC) method, which significantly improved K-Means clustering performance while reducing 

its sensitivity to random initialization [12]. 

In 2012, Kiran et al. proposed the HAP model, combining ACO and PSO, starting independently and then 

influencing each other through optimal solutions [13]. 
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2. Material and methods 

2.1 Particle Swarm Optimization Framework 

 

The operational framework of Particle Swarm Optimization (PSO) is centered around a collective intelligence 

paradigm, wherein a decentralized population of search agents referred to as particles stochastically explores the 

search space 𝒳 ⊆ ℝ𝑑. Within this iterative process, each individual agent functions as a repository for its own 

historical peak performance. Formally, a swarm 𝒮 is defined as a set of 𝑁 discrete particles {𝑃1, 𝑃2, … , 𝑃𝑁}, where 

the sets 𝐼 = {1,2, … , 𝑁} and 𝐷 = {1,2, … , 𝑑} are utilized to index the particles and their corresponding spatial 

dimensions, respectively. 

At each discrete temporal interval 𝑡, the dynamic status of an arbitrary particle 𝑖 is rigorously defined by the 

following parameters:  

𝑃𝑖
(𝑡)

= (𝐱𝑖
(𝑡)

, 𝐯𝑖
(𝑡)

, 𝐩𝐛𝐞𝐬𝐭𝑖
(𝑡)

, 𝒩𝑖
(𝑡)

),    ∀𝑖 ∈ 𝐼.                                                               (1) 

2.1.1 Position and Velocity Vectors 

The position vector 𝐱𝑖
(𝑡)

= (𝑥𝑖1
(𝑡)

, … , 𝑥𝑖𝑑
(𝑡)

)⊤ ∈ 𝒳 represents the particle’s current location. The velocity vector 

𝐯𝑖
(𝑡)

= (𝑣𝑖1
(𝑡)

, … , 𝑣𝑖𝑑
(𝑡)

)⊤ functions as a stochastic displacement operator, determining both direction and magnitude 

of the particle’s trajectory. 

 Each particle maintains a ’personal best’ memory 𝐩𝐛𝐞𝐬𝐭𝑖
(𝑡)

, representing the position that yielded the minimum 

objective value throughout its exploration:  

 𝐩𝐛𝐞𝐬𝐭𝑖
(𝑡)

= 𝑎𝑟𝑔 𝑚𝑖𝑛𝜏∈{0,…,𝑡}𝑓(𝐱𝑖
(𝜏)

).                 (2) 

 This serves as a cognitive attractor guiding search toward previously identified high-quality regions. PSO 

incorporates social information through neighborhood topology 𝒩𝑖
(𝑡)

⊆ 𝐼. The best position within the 

neighborhood, 𝐥𝐛𝐞𝐬𝐭𝑖
(𝑡)

, acts as a social attractor:  

                              𝐥𝐛𝐞𝐬𝐭𝑖
(𝑡)

= 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑗∈𝒩𝑖

(𝑡)𝑓(𝐩𝐛𝐞𝐬𝐭𝑗
(𝑡)

).               (3) 

In the global topology configuration (𝒩𝑖
(𝑡)

= 𝐼 for all particles), social influence is governed by the global best 

position:  

𝐠𝐛𝐞𝐬𝐭(𝑡) = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑗∈𝐼𝑓(𝐩𝐛𝐞𝐬𝐭𝑗
(𝑡)

).                                                                 (4) 

2.1.2 Canonical PSO Update Equations 

The original PSO algorithm updates particle velocities and positions using the following equations [40]:  

 𝑣𝑖𝑗
(𝑡+1)

= 𝑣𝑖𝑗
(𝑡)

+ 𝑐1𝑟1𝑗
(𝑡)

(𝑝𝑏𝑒𝑠𝑡𝑖𝑗
(𝑡)

− 𝑥𝑖𝑗
(𝑡)

) + 𝑐2𝑟2𝑗
(𝑡)

(𝑔𝑏𝑒𝑠𝑡𝑗
(𝑡)

− 𝑥𝑖𝑗
(𝑡)

)    (5) 

 𝑥𝑖𝑗
(𝑡+1)

= 𝑥𝑖𝑗
(𝑡)

+ 𝑣𝑖𝑗
(𝑡+1)

  (6) 

 where:   

• 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐷 denote particle index and dimension respectively  

• 𝑣𝑖𝑗
(𝑡)

: velocity of particle 𝑖 in dimension 𝑗 at iteration 𝑡  

• 𝑥𝑖𝑗
(𝑡)

: position of particle 𝑖 in dimension 𝑗 at iteration 𝑡  

• 𝑝𝑏𝑒𝑠𝑡𝑖𝑗
(𝑡)

: personal best position of particle 𝑖 in dimension 𝑗  

• 𝑔𝑏𝑒𝑠𝑡𝑗
(𝑡)

: global best position in dimension 𝑗  

• 𝑐1, 𝑐2: cognitive and social acceleration coefficients  

• 𝑟1𝑗
(𝑡)

, 𝑟2𝑗
(𝑡)

∼ 𝑈(0,1): independent random variables uniformly distributed in [0,1] for each dimension 𝑗 and 

iteration 𝑡  
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      Algorithm 1: Canonical Particle Swarm Optimization (PSO) 

 

Input : Objective function 𝑓 (𝒙); bounds (𝑙𝑏, 𝑢𝑏); dimension d; swarm 

size N ; maximum iterations T ; inertia weight w; cognitive and 

social coefficients c1, c2 

Output : Global best solution 𝑔𝑏𝑒𝑠𝑡 

1 for i = 1 to N do 

2 Initialize particle position 𝒙𝑖 ∼  𝑈 (𝑙𝑏, 𝑢𝑏) 

3 Initialize particle velocity 𝒗𝑖 ∼  𝑈 (−𝑣𝑚𝑎𝑥, 𝑣𝑚𝑎𝑥) 

4 Set personal best 𝑝𝑏𝑒𝑠𝑡𝑖 =  𝒙𝑖 

5 Evaluate 𝑓 (𝑝𝑏𝑒𝑠𝑡𝑖) for all particles 

6 Set 𝑔𝑏𝑒𝑠𝑡 =  𝑎𝑟𝑔 𝑚𝑖𝑛𝑖 𝑓 (𝑝𝑏𝑒𝑠𝑡𝑖) 

7 for t = 1 to T do 

8 for i = 1 to N do 

9 Generate random vectors 𝒓1, 𝒓2 ∼  𝑈 (0, 1)𝑑 

10 Update velocity 

 𝒗𝑖 ←  𝑤𝒗𝑖 +  𝑐1𝒓1 ⊙  (𝑝𝑏𝑒𝑠𝑡𝑖 −  𝒙𝑖)  +  𝑐2𝒓2 ⊙  (𝑔𝑏𝑒𝑠𝑡 −  𝒙𝑖)  

Update position: 

𝒙𝑖 ←  𝒙𝑖 +  𝒗𝑖 

Apply boundary constraints if necessary 

11 Evaluate fitness 𝑓 (𝒙𝑖) 

12 if 𝑓 (𝒙𝑖)  <  𝑓 (𝑝𝑏𝑒𝑠𝑡𝑖) then 

13  𝑝𝑏𝑒𝑠𝑡𝑖 ←  𝒙𝑖 

14 Update global best: 𝑔𝑏𝑒𝑠𝑡 =  𝑎𝑟𝑔 𝑚𝑖𝑛𝑖 𝑓 (𝑝𝑏𝑒𝑠𝑡𝑖) 

15 return 𝑔𝑏𝑒𝑠𝑡 

 

2.2 Filled Function Method 

The Filled Function Method (FFM) is a recent mathematical technique designed to address one of the most 

difficult challenges in global optimization: escaping local minima while looking for the global optimum of a 

multivariable function. Traditional optimization algorithms, such as gradient-based methods or Newton and quasi-

Newton approaches, are primarily local in nature. They are good at finding a minimum near the initial starting 

point, but they frequently become stuck in a local optimum, failing to reach the genuine global solution. 

2.2.1 Definition of the Filled Function 𝑷(𝒙, 𝒙∗) 

A function 𝑷(𝒙, 𝒙∗)is called the filled function of 𝑓(𝑥) at the local minimum point 𝑥1
∗ if 𝑷(𝒙, 𝒙∗) has the following 

properties: 

• 𝑥1
∗ is a maximizer of 𝑷(𝒙, 𝒙∗) and the whole basin 𝐵1

∗ of 𝑓(𝑥) at 𝑥1
∗ becomes a part of a hill of 𝑷(𝒙, 𝒙∗); 

• 𝑷(𝒙, 𝒙∗)has no minimizers or saddle points in any higher basin of 𝑓(𝑥) than 𝐵1
∗; 

• If 𝑓(𝑥) has a lower basin than 𝐵1
∗, then there is a point 𝑥′ in such a basin that minimizes 𝑷(𝒙, 𝒙∗) on the 

line through 𝑥′ and 𝑥1
∗.  

2.2.2 The Selected Filled Function for Hybridization 

In this study, a simplified one-parameter filled function is selected for hybridization with Particle Swarm 

Optimization (PSO). The choice of this specific filled function is motivated by its balance between simplicity, 

numerical stability, and strong compatibility with population-based metaheuristic algorithms. While it employs a 

single control parameter 𝜇, its design minimizes the tuning complexity often associated with earlier multi-

parameter versions, which is a crucial advantage when integrating deterministic techniques with stochastic 

optimization methods such as PSO. 
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The main idea of the selected filled function is to modify the local landscape of the objective function around the 

current best solution (𝑔𝑏𝑒𝑠𝑡) in such a way that this point becomes an unattractive region for further search. This 

is achieved by introducing a distance-based repulsion term combined with a penalization mechanism for worse 

solutions, regulated by the single parameter 𝜇. As a result, the filled function transforms the basin of attraction of 

the current 𝑔𝑏𝑒𝑠𝑡 into a hill, encouraging the search process to move away from it and explore regions with 

potentially lower objective values. This one-parameter formulation adapts effectively based on the intrinsic 

characteristics of the objective function and the chosen 𝜇 value, making the method robust and practical for 

implementation in high-dimensional or multimodal optimization problems. 

The one-parameter filled function adopted in this work is defined as follows:  

𝐹(x) = −∥ x − 𝑔𝑏𝑒𝑠𝑡 ∥2+ 𝜇 max(0, 𝑓(x) − 𝑓(𝑔𝑏𝑒𝑠𝑡))3,                              (7) 

 where 𝐱 ∈ ℝ𝑛 denotes a candidate solution, 𝑔𝑏𝑒𝑠𝑡 represents the current best solution (acting as the local 

minimizer), 𝜇 > 0 is the control parameter, and ∥⋅∥ is the Euclidean norm. 

 

3. Hybridization of (PSO-FFM) 

The concept of hybrid algorithms emerged in the 1990s, enabling scientists and researchers to merge two or more 

distinct algorithms into a single, cohesive framework. This integrative approach is designed to solve a given 

problem in a novel and more effective manner. A primary strength of hybrid algorithms is their capacity to mitigate 

the shortcomings and overcome the weaknesses of the individual algorithms they comprise. By leveraging the 

strengths of each component, they achieve enhanced robustness, efficiency, and accuracy in locating optimal 

solutions [15,19]. 

A critical feature of these hybrids is their ability to escape local optima, avoiding premature convergence on 

satisfactory but sub-optimal solutions. Each hybrid model aims to synergistically combine the advantages of its 

constituent algorithms while circumventing their limitations. Consequently, hybrid algorithms have demonstrated 

superior numerical performance compared to the standalone use of their components [14,16]. They have proven 

particularly effective in solving complex problems and optimizing high-dimensional functions, ultimately 

contributing to reduced computational time and cost while achieving superior results [17-20]. 

 

Algorithm 2: Hybrid Particle Swarm Optimization with Filled Function Method (PSO–FFM) 

 

Input : Objective function 𝑓 (𝒙); bounds (𝑙𝑏, 𝑢𝑏); dimension 𝑑; swarm size 𝑁 ; max 

iterations 𝑇 ; inertia weight 𝑤; acceleration coefficients 𝑐1, 𝑐2; stagnation limit 𝐿; filled function parameter µ 

Output : Global best solution 𝑔𝑏𝑒𝑠𝑡 

1 Initialization: 

• Initialize positions: 𝒙𝑖 ∼  𝑈 (𝑙𝑏, 𝑢𝑏) 

• Initialize velocities: 𝒗𝑖 ∼  𝑈 (−0.1, 0.1) 

• Set personal bests: 𝑝𝑏𝑒𝑠𝑡𝑖 =  𝒙𝑖, evaluate f (pbesti) 

• Set global best: 𝑔𝑏𝑒𝑠𝑡 =  𝑎𝑟𝑔 𝑚𝑖𝑛𝑖 𝑓 (𝑝𝑏𝑒𝑠𝑡𝑖) 

• Initialize stagnation counter: 𝑠𝑡𝑎𝑔𝑛𝑎𝑡𝑖𝑜𝑛 ←  0 

2 Filled Function (FFM): 

𝐹 (𝒙)  =  −∥ 𝒙 −  𝑔𝑏𝑒𝑠𝑡 ∥ 2 +  µ 𝑚𝑎𝑥(0, 𝑓 (𝒙)  −  𝑓 (𝑔𝑏𝑒𝑠𝑡))3 

 

3 for 𝑡 =  1 to 𝑇 do 

4 for 𝑖 =  1 to 𝑁 do 

5 Generate random vectors 𝒓1, 𝒓2 ∼  𝑈 (0, 1)𝑑 

6 Update velocity: 𝒗𝑖 ←  𝑤𝒗𝑖 +  𝑐1𝒓1 ⊙  (𝑝𝑏𝑒𝑠𝑡𝑖 −  𝒙𝑖)  +  𝑐2𝒓2 ⊙  (𝑔𝑏𝑒𝑠𝑡 −  𝒙𝑖)  

7 Update position: 𝒙𝑖 ←  𝒙𝑖 +  𝒗𝑖 
8 Apply boundary constraints and evaluate f (xi) 

9 if 𝑓 (𝒙𝑖)  <  𝑓 (𝑝𝑏𝑒𝑠𝑡𝑖) then 

 𝒑𝒃𝒆𝒔𝒕𝒊 ←  𝒙𝒊 

10 Update global best: 𝑔𝑏𝑒𝑠𝑡 ←  𝑎𝑟𝑔 𝑚𝑖𝑛𝑖 𝑓 (𝑝𝑏𝑒𝑠𝑡𝑖) 

if 𝑔𝑏𝑒𝑠𝑡 not improved then 

 𝑠𝑡𝑎𝑔𝑛𝑎𝑡𝑖𝑜𝑛 ←  𝑠𝑡𝑎𝑔𝑛𝑎𝑡𝑖𝑜𝑛 +  1 

else 

  stagnation ← 0 

11 if 𝑠𝑡𝑎𝑔𝑛𝑎𝑡𝑖𝑜𝑛 ≥  𝐿 then for i = 1 to 𝑁 do 

12 Generate 𝝐 ∼  𝑈 (−1, 1)𝑑 

13 Update position using FFM: xi ← xi + ϵ ⊙ F (xi) Apply boundary constraints and evaluate f(xi)  
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14  if 𝑓 (𝒙𝑖)  <  𝑓 (𝑝𝑏𝑒𝑠𝑡𝑖) then 

 𝑝𝑏𝑒𝑠𝑡𝑖 ←  𝒙𝑖 
15 Update global best again: 𝑔𝑏𝑒𝑠𝑡 ←  𝑎𝑟𝑔 𝑚𝑖𝑛𝑖 𝑓 (𝑝𝑏𝑒𝑠𝑡𝑖) 

16 Reset stagnation counter: stagnation ← 0 

17 return 𝑔𝑏𝑒𝑠𝑡 

4. Results and discussion 

The experimental evaluation was conducted on a comprehensive set of benchmark functions representing various 

optimization challenges, including unimodal, multimodal, separable, and non-separable functions. The algorithms 

were implemented in Python 3.8. Each experiment was repeated 30 times with different random seeds to ensure 

statistical significance. 

Benchmark test functions are widely used in numerical optimization and swarm intelligence literature as 

standardized and reliable tools for evaluating and comparing the performance of metaheuristic algorithms. These 

functions provide controlled mathematical environments with diverse landscape characteristics, allowing a 

systematic assessment of algorithmic behavior in terms of convergence speed, solution accuracy, exploration–

exploitation balance, and robustness against premature convergence. 

In this paper, a carefully selected set of well-established benchmark test functions is adopted to evaluate the 

performance of the proposed and comparative optimization algorithms under heterogeneous and increasingly 

complex search conditions. This selection ensures consistency with existing literature and enables meaningful 

comparison with previously published results. 

1. Sphere Function 

The simplest test case. It is smooth, unimodal (one peak/valley), and symmetric. 

𝑓(𝑥) = ∑ 𝑥𝑖
2

𝑑

𝑖=1

 

• Domain: [−100,100]𝑑 

• Global Optimum: 𝑓(0)  =  0 

• Property: Highly efficient for testing the convergence speed of an algorithm. 

2. Rosenbrock Function 

Also known as "Rosenbrock's Valley" or the "Banana Function." 

𝑓(𝑥) = ∑[100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (1 − 𝑥𝑖)2]

𝑑−1

𝑖=1

 

• Domain: [−30, 30]𝑑 

• Global Optimum: 𝑓(1) = 0 

• Property: The global optimum is inside a long, narrow, parabolic valley. Finding the valley is easy, but 

converging to the global minimum is notoriously difficult. 

 

3. Rastrigin Function 

A highly multimodal function—it’s full of local minima (traps) that look like a "bed of nails." 

𝑓(𝑥) =  10𝑑 +  ∑[𝑥𝑖
2 −  10 \𝑐𝑜𝑠(2𝜋𝑥𝑖)]

𝑑

𝑖=1

 

• Domain: [−5.12,5.12]𝑑 

• Global Optimum: 𝑓(0) = 0 

• Property: Tests an algorithm's ability to escape local optima and find the true global minimum. 

 

4. Griewank Function 

Similar to Rastrigin, it has many widespread local minima, but the "ruggedness" changes depending on the scale. 
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𝑓(𝑥) = 1 +
1

4000
∑ 𝑥𝑖

2

𝑑

𝑖=1

− ∏ 𝑐𝑜𝑠 (
1

√𝑖
)

𝑑

𝑖=1

 

• Domain: [−600,600]𝑑 

• Global Optimum: 𝑓(0) = 0 

• Property: It is non-separable, meaning the variables are interlinked, making it harder to solve one 

dimension at a time. 

 

5. Ackley Function 

Characterized by a nearly flat outer region and a very deep, narrow hole at the center. 

𝑓(𝑥) = −20 𝑒𝑥𝑝 (−0.2√
1

𝑑
∑ 𝑥𝑖

2) − 𝑒𝑥𝑝 (
1

𝑑
∑𝑐𝑜𝑠(2𝜋𝑥𝑖)) + 20 + 𝑒 

• Domain: [−32,32]𝑑 

• Global Optimum: 𝑓(0)  =  0 

• Property: Algorithms that use simple hill-climbing will get stuck in the flat outer regions and never find 

the "well." 

 

6. Schwefel 2.26 Function 

A deceptive function where the second-best local minimum is very far from the global minimum. 

𝑓(𝑥) = 418.9829𝑑 − ∑ 𝑥𝑖

𝑑

𝑖=1

𝑠𝑖𝑛 (√|𝑥𝑖|) 

• Domain: [−500, 500]𝑑 

• Global Optimum: 𝑓(420.9687, … , 420.9687) ≈ −1.25695 

• Property: Highly prone to tricking algorithms into converging in the wrong direction. 

 

7. Zakharov Function 

A plate-shaped function with a very shallow slope leading to the minimum. 

𝑓(𝑥) = ∑ 𝑥𝑖
2 + (∑ 0.5 𝑖𝑥𝑖)

2

+ (∑ 0.5 𝑖𝑥𝑖)
4

 

• Domain: [−5,10]𝑑 

• Global Optimum: 𝑓(0) = 0 

• Property: It contains no local minima, but its narrow ridge makes it difficult for gradient-based 

methods. 

 

8. Alpine 1 Function 

A "wavy" function that uses absolute values and sine waves. 

𝑓(𝑥) =  ∑|𝑥𝑖𝑠𝑖𝑛(𝑥𝑖) +  0.1𝑥𝑖| 

• Domain: [−10, 10]𝑑 

• Global Optimum: 𝑓(0)  =  0 

• Property: It is non-differentiable at the minimum due to the absolute value, testing how algorithms 

handle "sharp" points. 

This section presents a detailed performance analysis of the proposed hybrid PSO–FFM algorithm in comparison 

with the standard PSO. The evaluation focuses on analyzing the impact of the filled function mechanism on 

convergence behavior, solution accuracy, and overall optimization efficiency across a set of benchmark test 

functions. By examining both quantitative performance metrics and relative improvements, this section aims to 

highlight the strengths and limitations of the hybrid approach under different optimization scenarios. The analysis 

is supported by parameter configuration details and numerical results, providing a clear and objective assessment 

of the proposed algorithm’s effectiveness. 
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Table 1 presents the parameter settings used for both the standard PSO and the hybrid PSO–FFM algorithms. To 

ensure a fair comparison, identical values were assigned to the core PSO parameters in both approaches, while 

additional parameters related to stagnation detection and the filled function mechanism were introduced only in 

the hybrid model. 

Table 1 Algorithm Parameters for Standard PSO and PSO–FFM 

Parameter Standard PSO PSO–FFM 

Population size (N ) 30 40 

Maximum iterations (Tmax) 200 300 

Stagnation limit (S) – 10 

Inertia weight (ω) 0.7 0.7 

Cognitive coefficient (c1) 1.5 1.5 

Social coefficient (c2) 1.5 1.5 

Random factors (r1, r2) U (0, 1) U (0, 1) 

Problem dimension (d) 5 5 

Search bounds [−500, 500] [−500, 500] 

Filled Function parameter (µ) - 30-40 

 

Table 2 Performance Improvement of PSO–FFM over Standard PSO 

Function Standard PSO PSO–FFM Improvement (%) 

Sphere 5.378 × 10−14 2.757 × 10−24 99.99 

Rosenbrock 3.968 × 102 5.263 × 10−12 100 

Rastrigin 3.980 1.421 × 10−14 99.99 

Griewank 4.680 × 10−2 1.477 × 10−2 68.4 

Ackley 20.00 20.00 0 

Schwefel 2.369 × 102 3.553 × 102 -50.0 

Zakharov 8.797 × 10−2 5.885 × 10−15 100 

Alpine1 1.184 × 10−5 1.957 × 10−9 99.98 

 

Table 2 reports the optimization results obtained for a set of well-known benchmark functions. The results clearly 

indicate that the proposed PSO–FFM hybrid out- performs the standard PSO in most cases, achieving substantial 

performance improvements for functions such as Sphere, Rosenbrock, Rastrigin, Zakharov, and Alpine1. These 

improvements highlight the effectiveness of incorporating the filled function mechanism in enhancing the search 

process and avoiding premature convergence. 

Table 3 summarizes the parameter settings adopted for the standard PSO algorithm. The selected values 

correspond to the commonly used and widely accepted default parameters reported in the PSO literature. These 

settings represent the classical configuration of PSO and are known to provide a balanced trade-off between 

exploration and exploitation in the search process. By employing these conventional parameters, the performance 

of the standard PSO serves as a reliable baseline for comparison with the proposed hybrid approach. 
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Table 3: Parameters Used in Standard PSO 

Parameter Value / Description 

Swarm Size (N ) 30 

Max Iterations (T ) 300 

Inertia Weight (ω) 0.9 

Cognitive Coefficient (c1) 2.0 

Social Coefficient (c2) 2.0 

Stagnation Threshold (ϵ) 1 × 10−6 

Swarm Size (N ) 30 

Max Iterations (T ) 300 

 

Table 4 summarizes the general parameter settings of the hybrid PSO–FFM algorithm. Unlike the conventional 

PSO, these parameters were tuned to support the filled function mechanism and improve search efficiency by 

balancing exploration and exploitation. This tuning was aimed at achieving better convergence and higher-quality 

solutions for the benchmark optimization problems. 

Table 4: General Parameters Used in Hybrid PSO-FFM Algorithm 

Parameter Value / Description 

Swarm Size (N ) 40 

Max Iterations (T ) 400 

Stagnation Limit (S) 15 

Inertia Weight (ω) 0.8 

Cognitive Coefficient (c1) 1.8 

Social Coefficient (c2) 1.8 

Stagnation Threshold (ϵ) 1 × 10
−6

 

Fraction of Worst Particles (kfrac) 0.4 

Number of Top Particles for Local Search (m) 5 

Random Seed 124 

Random Factors (r1, r2) Drawn from uniform U (0, 1) 

Table 5: Performance Comparison: Standard PSO vs. PSO-FFM Enhanced 

Function Standard PSO PSO-FFM Enhanced Improvement (%) 

Sphere 4.4795 × 10−16 4.4635 × 10−27 100.00 

Rosenbrock 2.9369 × 101 1.6265 × 10−11 100.00 

Rastrigin 1.1798 × 101 1.4211 × 10−14 100.00 

Griewank 
9.7488 × 10

−2
 1.1779 × 10

−13
 

100.00 

Ackley 2.6789 1.8173 × 10
−8

 99.99 

Schwefel 
2.0752 × 10

3
 2.0752 × 10

3
 

0.00 

Zakharov 1.4903 6.7419 × 10
−16

 100.00 

Alpine1 
2.1603 × 10

−1
 1.6710 × 10

−9
 

99.99 

 

Table 5 provides a detailed comparison between the standard PSO and the enhanced PSO–FFM algorithm across 

a set of benchmark optimization functions. Overall, the results indicate that incorporating the filled function 

mechanism leads to a substantial improvement in solution quality and convergence accuracy for the majority of 

the tested functions. The enhanced PSO–FFM consistently achieves values that are several orders of magnitude 

closer to the known global optima compared to the standard PSO, highlighting the effectiveness of the proposed 

modification. 

For smooth and unimodal functions such as Sphere and Zakharov, the improvement is particularly pronounced. 

In these cases, the adaptive adjustment of the filled function parameter µ introduces a mild but sufficient 

perturbation that prevents premature stagnation without disrupting the exploitation process. As a result, the swarm 
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con- verges more precisely toward the global optimum, achieving near-zero objective values with significantly 

higher numerical accuracy than the standard PSO. 

Highly multimodal functions, including Rastrigin, Griewank, and Alpine1, also exhibit remarkable performance 

gains. These functions are characterized by a large number of local minima that commonly trap conventional 

swarm-based algorithms. By appropriately increasing the value of µ, the filled function mechanism amplifies the 

repulsive effect around inferior local optima, enabling particles to escape deceptive regions of the search space. 

This behavior enhances global exploration and leads to more reliable convergence toward the global optimum, as 

reflected by the dramatic reduction in final objective values. 

The Ackley function shows a notable but comparatively moderate improvement. Although Ackley is multimodal, 

its global structure is relatively regular and symmetric, allowing the standard PSO to locate competitive solutions. 

In this case, the filled function mechanism, guided by a moderate value of µ, provides additional refinement rather 

than a fundamental  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Convergence curves of standard PSO and PSO–FFM across multiple benchmark functions, showing 

faster descent and lower final values for the hybrid algorithm. change in search behavior, resulting in incremental 

accuracy gains rather than a complete transformation of performance. 
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In contrast, no observable improvement is achieved for the Schwefel function, where both algorithms converge 

to similar objective values. The Schwefel function is known for its highly deceptive landscape, characterized by 

numerous deep local minima dis- tributed far from the global optimum. In this scenario, the increased exploratory 

pressure induced by larger values of µ may cause particles to oscillate between distant regions of the search space, 

preventing stable convergence. This outcome suggests that, for extremely deceptive landscapes, the filled function 

mechanism may require further adaptation or a more sophisticated control strategy to avoid excessive exploration. 

Overall, the observed results demonstrate that the effectiveness of the PSO–FFM enhancement is strongly 

influenced by the interaction between the filled function parameter µ and the underlying characteristics of the 

optimization landscape. Proper tuning of µ significantly improves convergence behavior and solution precision 

for a wide range of functions, while highlighting the limitations of the approach for highly deceptive problems. 

These findings confirm that the proposed enhancement provides a robust and effective improvement over standard 

PSO, particularly for unimodal and moderately to highly multimodal optimization problems. 

5. Conclusion 

This study proposed a hybrid Particle Swarm Optimization framework that combines systematic parameter tuning 

with the Filled Function Method to address key limitations of conventional PSO, particularly premature 

convergence and entrapment in local optima. Experimental results on a comprehensive set of benchmark functions 

demonstrate that the proposed approach consistently outperforms standard PSO in terms of convergence speed, 

solution accuracy, and robustness, especially for multimodal and high-dimensional problems. 

The findings confirm that integrating well-calibrated parameters with complementary mechanisms significantly 

enhances the exploration–exploitation balance of swarm-based optimization. The proposed PSO–FFM framework 

offers a reliable and scalable optimization strategy and provides a foundation for future extensions to adaptive, 

constrained, and multi-objective optimization problems. 
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