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Abstract:

This research proposes a novel hybrid optimization algorithm that integrates Particle Swarm Optimization (PSO)
with the Filled Function Method (FFM) to address the persistent challenges of premature convergence and local
optima entrapment in high-dimensional, multimodal optimization problems. The hybrid PSO-FFM algorithm
incorporates a one parameter filled function that dynamically modifies the search landscape when stagnation is
detected, enabling systematic escape from deceptive basins while maintaining PSO’s exploration-exploitation
balance. Experimental evaluation across eight benchmark functions (Sphere, Rosenbrock, Rastrigin, Griewank,
Ackley, Schwefel, Zakharov, and Alpinel) demonstrates significant performance improvements, with the hybrid
algorithm achieving up to 100% enhancement over standard PSO in several cases. The proposed method offers a
robust framework for complex optimization tasks, particularly in engineering and computational applications
where traditional metaheuristics struggle with complex search landscapes.

Keywords: Particle Swarm Optimization, Filled Function Method, Hybrid Algorithms, Global Optimization,
Metaheuristics, Multimodal Optimization.
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1. Introduction
Optimization techniques play a critical role in engineering, scientific computing, and decision-making processes,
providing systematic approaches for identifying optimal solutions under specified constraints. Among
metaheuristic methods, Particle Swarm Optimization (PSO) has emerged as a prominent approach due to its
conceptual simplicity, adaptability, and effective balance between exploration and exploitation. Inspired by
collective behaviors in biological systems, PSO employs a population of particles that iteratively adjust their
positions based on individual and collective knowledge, making it particularly suitable for continuous, nonlinear
optimization problems.

Despite its advantages, standard PSO exhibits notable limitations when applied to complex optimization scenarios,
particularly those characterized by high dimensionality, multimodality, or deceptive objective functions. The
algorithm is prone to premature convergence, stagnation in local optima, and reduced effectiveness as problem
complexity increases. These challenges stem from PSO’s inherent difficulty in maintaining population diversity
and its sensitivity to parameter settings, especially in rugged search landscapes where the global optimum may be
separated by numerous local optima.

To address these limitations, this paper introduces a novel hybridization approach that combines PSO with the
Filled Function Method (FFM), a deterministic technique designed specifically for escaping local optima. The
resulting PSO-FFM algorithm integrates the global search capabilities of PSO with the landscape modification
properties of FFM, creating a synergistic optimization framework that enhances both exploration and exploitation
capabilities.

1.1. Related Work

Among the most prominent approaches in this context is the hybridization of PSO with Genetic Algorithms (GA).
Researchers have proposed different strategies for this hybridization, including reciprocal integration, sequential
application, or embedding GA operators within the PSO framework [1, 2, 3]. In 1998, Angeline introduced the
first concept of hybridization between algorithms by combining Particle Swarm Optimization (PSO) with Genetic
Algorithms (GA). Angeline incorporated the principle of selection by proposing a mechanism to eliminate the
least effective solutions—either by discarding them or reinitializing them. This approach aimed to enhance
solution quality, achieve better optimization results, and reduce the likelihood of falling into local optima [4].

In 2001, Krink, Lovbjerg, Rasmussen proposed the integration of additional mechanisms— such as Genetic
Algorithms (GA)-into the Particle Swarm Optimization (PSO) frame- work. This hybrid model yielded improved
solution quality and performance compared to using each algorithm independently [5].

For instance, in 2002 Robinson, J., Sinton, S., Rahmat-Samii combined PSO with GA, where PSO contributed to
enhancing the search for promising solutions, while GA improved the accuracy in reaching feasible solutions.
This synergy resulted in highly precise and high-quality outcomes [6]. In 2003 Shi, X., Lu, Y., Zhou, C., Lee, H.,
Lin, W., Liang generated the best particles after several iterations and reinitialized them for the second algorithm,
while random generation was employed to fill the remaining population [7].

In 2007, Shelokar et al. proposed the first hybrid algorithm between PSO and ACO, which they called PSACO.
PSO generates and processes the initial values, then inputs them to ACO. The algorithm proved its efficiency on
non-convex functions and achieved a remarkable balance between exploration and exploitation [8].

In 2009, Kaveh and Talatahari developed a hybrid model of three algorithms, using PSO with negative clustering
(PSOPC, ACO, HS). This hybridization was effective in optimizing network structures with discrete variables [9].
In 2010, Niknam and Amiri presented a hybrid model combining adaptive fuzzy PSO with ACO and K-Means.
They dynamically guided ACO using Q-Learning [10]. In 2011, Chen et al. proposed a hybrid framework that
integrates ACO-PSO with GA and SA, aiming to enhance global search efficiency and improve the quality of
solutions [11]. In the same year, Xiong and Wang introduced the Two-stage ACO-

PSO Clustering (TAPC) method, which significantly improved K-Means clustering performance while reducing
its sensitivity to random initialization [12].

In 2012, Kiran et al. proposed the HAP model, combining ACO and PSO, starting independently and then
influencing each other through optimal solutions [13].
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2. Material and methods

2.1 Particle Swarm Optimization Framework

The operational framework of Particle Swarm Optimization (PSO) is centered around a collective intelligence
paradigm, wherein a decentralized population of search agents referred to as particles stochastically explores the
search space X’ € R<. Within this iterative process, each individual agent functions as a repository for its own
historical peak performance. Formally, a swarm § is defined as a set of N discrete particles {P;, P,, ..., Py}, where
the sets I = {1,2,...,N} and D = {1,2, ..., d} are utilized to index the particles and their corresponding spatial
dimensions, respectively.

At each discrete temporal interval t, the dynamic status of an arbitrary particle i is rigorously defined by the
following parameters:

(t) (x(t) t),pbestgt),]\fi(t)), Vi el (1)

2.1.1  Position and Velocity Vectors
The position vector X(t) (x(t) (t))T € X represents the particle’s current location. The velocity vector
l.(t) (vl(f), (t))T functions as a stochastic displacement operator, determining both direction and magnitude

of the particle’s trajectory.

Each particle maintains a ’personal best’ memory pbestgt)

objective value throughout its exploration:

, representing the position that yielded the minimum

®

pbest;” = arg minfe{o,...,t}f(xgr))- @

This serves as a cognitive attractor guiding search toward previously identified high-quality regions. PSO
incorporates social information through neighborhood topology J\fi(t) € 1. The best position within the
neighborhood, lbestl@, acts as a social attractor:

Ibest'” = arg minjeNi(t)f(pbest}t))_ (3)

In the global topology configuration (]\fi(t) = [ for all particles), social influence is governed by the global best
position:

gbest® = arg mmjaf(PbeSt(t)) @)

2.1.2  Canonical PSO Update Equations
The original PSO algorithm updates particle velocities and positions using the following equations [40]:

vl(fﬂ) (t) +an r® (pbest(t) (t)) +c; r(t) (gbest(t) i(;) )
t+1 t t+1
xl(]+ ) = xl(J) + vl.(j ) (6)

where:

e i elandj € D denote particle index and dimension respectively
o ( ), veI00|ty of particle i in dimension j at iteration ¢t

Xy posmon of particle i in dimension j at iteration t

o pbest : personal best position of particle i in dimension j

t(f)

* gbest, global best position in dimension j

*  (,Cy cognltlve and social acceleration coefficients
(]t), Z(Jt) ~ U(0,1): independent random variables uniformly distributed in [0,1] for each dimension j and
iteration t

4 T
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Algorithm 1: Canonical Particle Swarm Optimization (PSO)

Input : Objective function f (x); bounds (lb, ub); dimension d; swarm
size N; maximum iterations T ; inertia weight w; cognitive and
social coefficients ¢y, C2

Output : Global best solution gbest

1 fori=1to N do

2 Initialize particle position xi ~ U (b, ub)

3 Initialize particle velocity vi ~ U (—vmax, vmax)
4 Set personal best pbesti = xi

5 Evaluate f (pbesti) for all particles
6 Set ghest = arg mini f (pbesti)
7 fort=1to T do
8 fori=1to N do
9 Generate random vectorsr1,r2 ~ U (0, 1)d
10 Update velocity
vi <« wvi + clrl © (pbesti — xi) + c2r2 © (gbest — xi)
Update position:
xi « xi + vi

Apply boundary constraints if necessary

11 Evaluate fitness f (xi)
12 if f (xi) < f (pbesti) then
13 t pbesti « xi

14 Update global best: gbest = arg mini f (pbesti)

15 return gbest

2.2 Filled Function Method
The Filled Function Method (FFM) is a recent mathematical technique designed to address one of the most
difficult challenges in global optimization: escaping local minima while looking for the global optimum of a
multivariable function. Traditional optimization algorithms, such as gradient-based methods or Newton and quasi-
Newton approaches, are primarily local in nature. They are good at finding a minimum near the initial starting
point, but they frequently become stuck in a local optimum, failing to reach the genuine global solution.
2.2.1  Definition of the Filled Function P(x, x*)
A function P(x, x*)is called the filled function of f(x) at the local minimum point x; if P(x, x*) has the following
properties:
e x;isamaximizer of P(x, x*) and the whole basin B; of f(x) at x; becomes a part of a hill of P(x, x*);
e  P(x,x*)has no minimizers or saddle points in any higher basin of f(x) than B;;
e If f(x) has a lower basin than B;, then there is a point x" in such a basin that minimizes P(x, x*) on the
line through x' and x;.
2.2.2  The Selected Filled Function for Hybridization
In this study, a simplified one-parameter filled function is selected for hybridization with Particle Swarm
Optimization (PSO). The choice of this specific filled function is motivated by its balance between simplicity,
numerical stability, and strong compatibility with population-based metaheuristic algorithms. While it employs a
single control parameter u, its design minimizes the tuning complexity often associated with earlier multi-
parameter versions, which is a crucial advantage when integrating deterministic techniques with stochastic
optimization methods such as PSO.
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The main idea of the selected filled function is to modify the local landscape of the objective function around the
current best solution (gbest) in such a way that this point becomes an unattractive region for further search. This
is achieved by introducing a distance-based repulsion term combined with a penalization mechanism for worse
solutions, regulated by the single parameter u. As a result, the filled function transforms the basin of attraction of
the current gbest into a hill, encouraging the search process to move away from it and explore regions with
potentially lower objective values. This one-parameter formulation adapts effectively based on the intrinsic
characteristics of the objective function and the chosen u value, making the method robust and practical for
implementation in high-dimensional or multimodal optimization problems.
The one-parameter filled function adopted in this work is defined as follows:

F(x) = —|l x — gbest 1>+ u max(0, f(x) — f(gbest))3, )
where x € R™ denotes a candidate solution, gbest represents the current best solution (acting as the local
minimizer), u > 0 is the control parameter, and |-1| is the Euclidean norm.

3. Hybridization of (PSO-FFM)

The concept of hybrid algorithms emerged in the 1990s, enabling scientists and researchers to merge two or more
distinct algorithms into a single, cohesive framework. This integrative approach is designed to solve a given
problem in a novel and more effective manner. A primary strength of hybrid algorithms is their capacity to mitigate
the shortcomings and overcome the weaknesses of the individual algorithms they comprise. By leveraging the
strengths of each component, they achieve enhanced robustness, efficiency, and accuracy in locating optimal
solutions [15,19].

A critical feature of these hybrids is their ability to escape local optima, avoiding premature convergence on
satisfactory but sub-optimal solutions. Each hybrid model aims to synergistically combine the advantages of its
constituent algorithms while circumventing their limitations. Consequently, hybrid algorithms have demonstrated
superior numerical performance compared to the standalone use of their components [14,16]. They have proven
particularly effective in solving complex problems and optimizing high-dimensional functions, ultimately
contributing to reduced computational time and cost while achieving superior results [17-20].

Algorithm 2: Hybrid Particle Swarm Optimization with Filled Function Method (PSO-FFM)

Input : Objective function f (x); bounds (b, ub); dimension d; swarm size N ; max
iterations T ; inertia weight w; acceleration coefficients c1, c2; stagnation limit L; filled function parameter p
Output : Global best solution gbest
1 Initialization:
e Initialize positions: xi ~ U (Ib,ub)
e Initialize velocities: vi ~ U (—0.1,0.1)
e  Set personal bests: pbesti = xi, evaluate f (pbest;)
e Setglobal best: ghest = arg mini f (pbesti)
e Initialize stagnation counter: stagnation < 0
2 Filled Function (FFM):

F(x) = —llx — gbest | 2 + pmax(0,f (x) — f (gbest))3
3 fort = 1toTdo
4 fori = 1toNdo
5 Generate random vectors r1,r2 ~ U (0,1)d
6 Update velocity: vi « wvi + clrl © (pbesti — xi) + c2r2 O (gbest — xi)
7 Update position: xi « xi + vi
8 Apply boundary constraints and evaluate f (x;)
9 if f(xi) < f (pbesti) then

Lpbesti « xi
10 Update global best: gbest « arg mini f (pbesti)
if gbest not improved then

stagnation < stagnation + 1
else

L stagnation < 0
11 if stagnation = Lthenfori=1to N do

12 Generatee ~ U (—1,1)d
13 Update position using FFM: x; < Xi + € O F (x;) Apply boundary constraints and evaluate f(x;)
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14 if f (xi) < f (pbesti) then

pbesti « xi
15 Update global best again: gbest < arg mini f (pbesti)
16 Reset stagnation counter: stagnation « 0
17 return gbest

4. Results and discussion

The experimental evaluation was conducted on a comprehensive set of benchmark functions representing various
optimization challenges, including unimodal, multimodal, separable, and non-separable functions. The algorithms
were implemented in Python 3.8. Each experiment was repeated 30 times with different random seeds to ensure
statistical significance.

Benchmark test functions are widely used in numerical optimization and swarm intelligence literature as
standardized and reliable tools for evaluating and comparing the performance of metaheuristic algorithms. These
functions provide controlled mathematical environments with diverse landscape characteristics, allowing a
systematic assessment of algorithmic behavior in terms of convergence speed, solution accuracy, exploration—
exploitation balance, and robustness against premature convergence.

In this paper, a carefully selected set of well-established benchmark test functions is adopted to evaluate the
performance of the proposed and comparative optimization algorithms under heterogeneous and increasingly
complex search conditions. This selection ensures consistency with existing literature and enables meaningful
comparison with previously published results.

1. Sphere Function
The simplest test case. It is smooth, unimodal (one peak/valley), and symmetric.
d

O = x

i=1
e Domain: [-100,100]¢
e Global Optimum: f(0) = 0
o  Property: Highly efficient for testing the convergence speed of an algorithm.
2. Rosenbrock Function
Also known as "Rosenbrock’s Valley" or the "Banana Function."

d-1

fG) = D 110G = ¥)? + (1 - x)?)
i=1

e Domain: [-30,30]¢

e Global Optimum: f(1) =0

e Property: The global optimum is inside a long, narrow, parabolic valley. Finding the valley is easy, but
converging to the global minimum is notoriously difficult.

3. Rastrigin Function

A highly multimodal function—it’s full of local minima (traps) that look like a "bed of nails."

d
f(x) = 10d + Z[xiz — 10 \cos(2mx;)]

e Domain: [-5.12,5.12]¢

e Global Optimum: f(0) =0

e Property: Tests an algorithm's ability to escape local optima and find the true global minimum.
4. Griewank Function

Similar to Rastrigin, it has many widespread local minima, but the "ruggedness" changes depending on the scale.
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da da

f(x)=1+ﬁ2xi2— cos(%)

i=1 i=1

e Domain: [-600,600]¢
e Global Optimum: f(0) =0

e Property: It is non-separable, meaning the variables are interlinked, making it harder to solve one

dimension at a time.

5. Ackley Function

Characterized by a nearly flat outer region and a very deep, narrow hole at the center.

1 1
f(x) =—-20exp| —0.2 EZ x? | —exp (EZCOS(ZHXL-)) +20+e

e Domain: [—-32,32]¢
e Global Optimum: f(0) = 0

e  Property: Algorithms that use simple hill-climbing will get stuck in the flat outer regions and never find

the "well."

6. Schwefel 2.26 Function

A deceptive function where the second-best local minimum is very far from the global minimum.

d
f(x) = 418.9829d — Z x; sin (\/xi])

i=1

e Domain: [-500,500]¢
e  Global Optimum: f£(420.9687, ...,420.9687) ~ —1.25695
e  Property: Highly prone to tricking algorithms into converging in the wrong direction.

7. Zakharov Function

A plate-shaped function with a very shallow slope leading to the minimum.
2 4
flx) = Z x? + (z 05ix) + (Z 0.5 ix;)
e Domain: [-5,10]¢

e Global Optimum: f(0) =0
e  Property: It contains no local minima, but its narrow ridge makes it difficult for gradient-based
methods.

8. Alpine 1 Function
A "wavy" function that uses absolute values and sine waves.
fx) = Xlxsin(x;) + 0.1x;]

e Domain: [-10,10]¢
e Global Optimum: f(0) = 0

e  Property: It is non-differentiable at the minimum due to the absolute value, testing how algorithms

handle "sharp" points.

This section presents a detailed performance analysis of the proposed hybrid PSO—-FFM algorithm in comparison
with the standard PSO. The evaluation focuses on analyzing the impact of the filled function mechanism on
convergence behavior, solution accuracy, and overall optimization efficiency across a set of benchmark test
functions. By examining both quantitative performance metrics and relative improvements, this section aims to
highlight the strengths and limitations of the hybrid approach under different optimization scenarios. The analysis
is supported by parameter configuration details and numerical results, providing a clear and objective assessment

of the proposed algorithm’s effectiveness.

186 | Journal of Insights in Basic and Applied Sciences



Table 1 presents the parameter settings used for both the standard PSO and the hybrid PSO-FFM algorithms. To
ensure a fair comparison, identical values were assigned to the core PSO parameters in both approaches, while
additional parameters related to stagnation detection and the filled function mechanism were introduced only in
the hybrid model.

Table 1 Algorithm Parameters for Standard PSO and PSO-FFM

Parameter Standard PSO PSO-FFM
Population size (N) 30 40
Maximum iterations (Tmax) 200 300
Stagnation limit (S) - 10
Inertia weight () 0.7 0.7
Cognitive coefficient (c1) 15 15
Social coefficient (c) 15 15
Random factors (r1, r2) U (0, 1) U (0, 1)
Problem dimension (d) 5 5
Search bounds [-500, 500] [-500, 500]
Filled Function parameter () - 30-40

Table 2 Performance Improvement of PSO—FFM over Standard PSO

Function Standard PSO PSO-FFM Improvement (%)
Sphere 5.378 x 107 2.757 x 107 99.99
Rosenbrock 3.968 x 102 5.263 x 10712 100
Rastrigin 3.980 1.421 x 1074 99.99
Griewank 4.680 x 1072 1.477 x 1072 68.4
Ackley 20.00 20.00 0
Schwefel 2.369 x 102 3.553 x 102 -50.0
Zakharov 8.797 x 1072 5.885 x 10715 100
Alpinel 1.184 x 1075 1.957 x 107° 99.98

Table 2 reports the optimization results obtained for a set of well-known benchmark functions. The results clearly
indicate that the proposed PSO—-FFM hybrid out- performs the standard PSO in most cases, achieving substantial
performance improvements for functions such as Sphere, Rosenbrock, Rastrigin, Zakharov, and Alpinel. These
improvements highlight the effectiveness of incorporating the filled function mechanism in enhancing the search
process and avoiding premature convergence.

Table 3 summarizes the parameter settings adopted for the standard PSO algorithm. The selected values
correspond to the commonly used and widely accepted default parameters reported in the PSO literature. These
settings represent the classical configuration of PSO and are known to provide a balanced trade-off between
exploration and exploitation in the search process. By employing these conventional parameters, the performance
of the standard PSO serves as a reliable baseline for comparison with the proposed hybrid approach.
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Table 3: Parameters Used in Standard PSO

Parameter Value / Description

Swarm Size (N) 30
Max Iterations (T) 300
Inertia Weight (w) 0.9
Cognitive Coefficient (c1) 2.0
Social Coefficient (cy) 2.0

Stagnation Threshold () 1x10°
Swarm Size (N) 30
Max Iterations (T) 300

Table 4 summarizes the general parameter settings of the hybrid PSO—FFM algorithm. Unlike the conventional
PSO, these parameters were tuned to support the filled function mechanism and improve search efficiency by
balancing exploration and exploitation. This tuning was aimed at achieving better convergence and higher-quality
solutions for the benchmark optimization problems.

Table 4: General Parameters Used in Hybrid PSO-FFM Algorithm

Parameter Value / Description
Swarm Size (N) 40
Max Iterations (T) 400
Stagnation Limit (S) 15
Inertia Weight () 0.8
Cognitive Coefficient (c1) 1.8
Social Coefficient (cy) 1.8
Stagnation Threshold (¢) 1x10°6

Fraction of Worst Particles (Kfrac) 04
Number of Top Particles for Local Search (m) 5
Random Seed 124

Random Factors (ry, o) Drawn from uniform U(0, 1)

Table 5: Performance Comparison: Standard PSO vs. PSO-FFM Enhanced

Function Standard PSO PSO-FFM Enhanced Improvement (%)
Sphere 4.4795 x 10716 4.4635x 107 100.00
Rosenbrock 2.9369 x 10t 1.6265 x 107! 100.00
Rastrigin 1.1798 x 10! 14211 x 107 100.00
Griewank 07488 x 102 11779 x 10 13 100.00
Ackley 2.6789 18173 x10° 8 99.99
Sctwefel 2.0752 103 2.0752 103 0.00
Zakharov 1.4903 6.7419 x 10—16 100.00
Alpinel 2.1603 x 10! 16710 x 10 ° 99.99

Table 5 provides a detailed comparison between the standard PSO and the enhanced PSO-FFM algorithm across
a set of benchmark optimization functions. Overall, the results indicate that incorporating the filled function
mechanism leads to a substantial improvement in solution quality and convergence accuracy for the majority of
the tested functions. The enhanced PSO—-FFM consistently achieves values that are several orders of magnitude

closer to the known global optima compared to the standard PSO, highlighting the effectiveness of the proposed
modification.

For smooth and unimodal functions such as Sphere and Zakharov, the improvement is particularly pronounced.
In these cases, the adaptive adjustment of the filled function parameter p introduces a mild but sufficient
perturbation that prevents premature stagnation without disrupting the exploitation process. As a result, the swarm
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con- verges more precisely toward the global optimum, achieving near-zero objective values with significantly
higher numerical accuracy than the standard PSO.

Highly multimodal functions, including Rastrigin, Griewank, and Alpinel, also exhibit remarkable performance
gains. These functions are characterized by a large number of local minima that commonly trap conventional
swarm-based algorithms. By appropriately increasing the value of L, the filled function mechanism amplifies the
repulsive effect around inferior local optima, enabling particles to escape deceptive regions of the search space.
This behavior enhances global exploration and leads to more reliable convergence toward the global optimum, as
reflected by the dramatic reduction in final objective values.

The Ackley function shows a notable but comparatively moderate improvement. Although Ackley is multimodal,
its global structure is relatively regular and symmetric, allowing the standard PSO to locate competitive solutions.
In this case, the filled function mechanism, guided by a moderate value of i, provides additional refinement rather

than a fundamental

Griewank Ackley
—— PSO Standard —— PSD Standard
10! 4 —— PSO FFM Enhanced 2.08 % 10! —— PS5O FFM Enhanced
2.06%10%
2 100 X
3 kS
= = 1
a ﬁ 2.04 x 10
L= o
10°} N
2,02 %10
2x10%
[ 50 100 150 200 250 300 0 50 160 150 200 250 300
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105 1 — —— P50 Standard 102 - — PsO Standard
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Figure 1: Convergence curves of standard PSO and PSO-FFM across multiple benchmark functions, showing
faster descent and lower final values for the hybrid algorithm. change in search behavior, resulting in incremental
accuracy gains rather than a complete transformation of performance.
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In contrast, no observable improvement is achieved for the Schwefel function, where both algorithms converge
to similar objective values. The Schwefel function is known for its highly deceptive landscape, characterized by
numerous deep local minima dis- tributed far from the global optimum. In this scenario, the increased exploratory
pressure induced by larger values of 4 may cause particles to oscillate between distant regions of the search space,
preventing stable convergence. This outcome suggests that, for extremely deceptive landscapes, the filled function
mechanism may require further adaptation or a more sophisticated control strategy to avoid excessive exploration.

Overall, the observed results demonstrate that the effectiveness of the PSO—FFM enhancement is strongly
influenced by the interaction between the filled function parameter p and the underlying characteristics of the
optimization landscape. Proper tuning of u significantly improves convergence behavior and solution precision
for a wide range of functions, while highlighting the limitations of the approach for highly deceptive problems.
These findings confirm that the proposed enhancement provides a robust and effective improvement over standard
PSO, particularly for unimodal and moderately to highly multimodal optimization problems.

5. Conclusion

This study proposed a hybrid Particle Swarm Optimization framework that combines systematic parameter tuning
with the Filled Function Method to address key limitations of conventional PSO, particularly premature
convergence and entrapment in local optima. Experimental results on a comprehensive set of benchmark functions
demonstrate that the proposed approach consistently outperforms standard PSO in terms of convergence speed,
solution accuracy, and robustness, especially for multimodal and high-dimensional problems.

The findings confirm that integrating well-calibrated parameters with complementary mechanisms significantly
enhances the exploration—exploitation balance of swarm-based optimization. The proposed PSO-FFM framework
offers a reliable and scalable optimization strategy and provides a foundation for future extensions to adaptive,
constrained, and multi-objective optimization problems.
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