

A Comprehensive Review of Energy Storage Batteries for Solar Energy Systems

Abdulgader Alsharif ^{1*}, Karam Sameer Qasim Qassab², Abdulhakeem Dobi ³, Abdulssalam Ali Ahmed ⁴, Mohamed A Alsharif ⁵, Ali Almaktoof ⁶, Ibrahim Imbamy ⁷

¹Department of Electric and Electronic Engineering, College of Technical Sciences Sabha, Sabha, Libya

² Department of Electrical techniques, Polytechnic College Mosul, Northern Technical University, Mosul, 41002, Iraq

³ Department of Electrical Engineering, College of Engineering, Waziri Umaru Federal Polytechnic, P.M.B. 1034. Birnin Kebbi, Nigeria

⁴ Mechanical and Industrial Engineering Department, Bani Waleed University, Bani Walid, Libya

⁵ Department of communication and information technology, Technical College of Civil Aviation and Meteorology, Espia, Libya

⁶ Department of Electrical, Electronics, & Computer Engineering, Faculty of Engineering and the Built Environment, Cape Peninsula University of Technology, Cape Town 7535, South Africa

⁷Department of Energy Engineering, College of Renewable Energy, Tajoura, Libya

مراجعة شاملة لبطاريات تخزين الطاقة لأنظمة الطاقة الشمسية

عبدالقادر الشريف^{1*} ، كرم سمير قاسم قصاب² ، عبدالحكيم دوبي³ ، عبدالسلام علي أحمد⁴ ، محمد أبوبكر الشريف⁵ ، علي المقطوف⁶ ، إبراهيم اميبيه⁷

¹ قسم الهندسة الكهربائية والإلكترونية، كلية العلوم التقنية، سبها، ليبيا

² قسم التقنيات الكهربائية، كلية الموصل التقنية، الجامعة التقنية الشمالية، الموصل، 41002، العراق

³ قسم الهندسة الكهربائية، كلية الهندسة، معهد ووزير عمر الفيدرالي التقني، ص.ب. 1024، بيرنيني كبيي، نيجيريا

⁴ قسم الهندسة الميكانيكية والصناعية، جامعة بني وليد، بني وليد، ليبيا

⁵ قسم الاتصالات وتكنولوجيا المعلومات، الكلية التقنية للطيران المدني والأرصاد الجوية، السبيعة، ليبيا

⁶ قسم الهندسة الكهربائية والإلكترونية وهندسة الحاسوب، كلية الهندسة والبيئة العمرانية، جامعة كيب بنينسو لا للتكنولوجيا، كيب تاون 7595، جنوب أفريقيا

⁷ قسم هندسة الطاقة، كلية الطاقة المتجددة، تاجوراء، ليبيا

*Corresponding author: Alsharifutm@gmail.com

Received: November 28, 2025

Accepted: January 25, 2026

Published: February 11, 2026

Copyright: © 2026 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

Abstract:

Solar energy intermittency necessitates efficient energy storage for grid stability and reliable power supply. This review comprehensively examines battery technologies for solar photovoltaic applications, including lead-acid, lithium-ion (LFP, NMC, LTO), flow batteries (vanadium redox, zinc-bromine), and emerging systems such as

sodium-ion, solid-state, and saltwater batteries. We evaluate performance characteristics—energy density, cycle life, round-trip efficiency, depth of discharge alongside cost-effectiveness, thermal management requirements, environmental impact, and application suitability across off-grid, residential, and utility-scale installations. Lithium-ion batteries currently offer optimal balance of efficiency (90–95%) and lifespan (2000–6000 cycles), while flow batteries provide exceptional scalability for long-duration storage. Lead-acid remains cost-effective for low-budget systems despite limited cycle life. Critical challenges include degradation mechanisms, thermal runaway risks, recycling infrastructure, and upfront capital costs. Emerging trends second-life EV batteries, AI-optimized management, hybrid supercapacitor integration, and sustainable material innovation are shaping future deployment. This synthesis guides researchers, policymakers, and industry stakeholders toward technoeconomically viable and environmentally sustainable solar energy storage solutions.

Keywords: Solar Energy Storage, Lithium-Ion Batteries, Flow Batteries, Lead-Acid Batteries, Renewable Energy Integration, Battery Management Systems.

الملخص

يتطلب انقطاع الطاقة الشمسية حلول تخزين طاقة فعالة لضمان استقرار الشبكة الكهربائية وتوفير إمدادات طاقة موثوقة. تستعرض هذه الدراسة بشكل شامل تقنيات البطاريات المستخدمة في تطبيقات الطاقة الشمسية الكهروضوئية، بما في ذلك بطاريات الرصاص الحمضية، وبطاريات الليثيوم أيون (NMC، LFP، LTO)، وبطاريات التدفق (الفاناديوم المؤكسد، الزنك-البروم)، والأنظمة الناشئة مثل بطاريات الصوديوم أيون، وبطاريات الصلبة، وبطاريات المياه المالحة. تقوم بتقدير خصائص الأداء - كثافة الطاقة، وعمر الدورة، وكفاءة الشحن والتغريغ، وعمق التغريغ - إلى جانب فعالية التكلفة، ومتطلبات الإدارية الحرارية، والأثر البيئي، ومدى ملاءمة التطبيق في المنشآت خارج الشبكة، والسكنية، وعلى نطاق المرافق العامة. توفر بطاريات الليثيوم أيون حاليًا توازنًا مثالياً بين الكفاءة (90-95%) وال عمر الافتراضي (2000-6000 دورة)، بينما توفر بطاريات التدفق قابلية توسيع استثنائية لتخزين الطاقة لفترات طويلة. لا تزال بطاريات الرصاص الحمضية فعالة من حيث التكلفة للأنظمة منخفضة التكلفة على الرغم من عمر الدورة المحدود. تشمل التحديات الرئيسية آليات التدبر، ومخاطر البروب الحراري، وبنية إعادة التدوير، والتکالیف الرأسمالية الأولية. تشكل التوجهات الناشئة - كاستخدام بطاريات السيارات الكهربائية المعد تدويرها، والإدارة المحسنة بالذكاء الاصطناعي، ودمج المكثفات الفائقة الهجينة، وابتكار المواد المستدامة - ملامح مستقبل استخدام الطاقة الشمسية. يُقدم هذا التقرير ملخصاً يُرشد الباحثين وصناع السياسات والجهات المعنية في القطاع نحو حلول تخزين الطاقة الشمسية المجدية تقنياً واقتصادياً ومستداماً بيئياً.

الكلمات المفتاحية: تخزين الطاقة الشمسية، بطاريات الليثيوم أيون، بطاريات التدفق، بطاريات الرصاص الحمضية، دمج الطاقة المتجدد، أنظمة إدارة البطاريات.

Introduction

The swift growth of solar energy as a fundamental component of worldwide renewable energy systems has highlighted the essential requirement for effective and dependable energy storage technologies [1]. Solar photovoltaic (PV) systems, despite being environmentally sustainable, encounter intrinsic obstacles stemming from the intermittent nature of solar irradiation [2], which varies with daily cycles, seasonal changes, and meteorological circumstances [3]. Energy storage technologies, especially batteries, are essential for maintaining a stable and continuous power supply by reconciling the disparity between energy generation and demand [4], [5]. Batteries not only reduce the fluctuations of solar energy but also improve grid stability [6], support off-grid electrification [7], and enable peak shaving in both business and residential settings [8]. The shift towards decarbonized energy systems is intensifying, leading to heightened focus on enhanced battery technologies for solar energy integration among researchers, politicians, and industry stakeholders [9].

The progression of battery technologies for solar energy storage has been characterized by notable improvements in materials research, electrochemical engineering, and system design [10]. Conventional lead-acid batteries, esteemed for their affordability and dependability, have historically prevailed in off-grid and small-scale solar applications [11]. Nonetheless, their constraints namely, limited cycle life, reduced Depth of Discharge (DoD), and maintenance demands have prompted the transition to more sophisticated alternatives [12]. Lithium-ion batteries, characterized by their exceptional energy density, high efficiency, and decreasing costs [13], have become the favored option for solar storage in residential and commercial applications [14], as demonstrated by the extensive use of systems such as the Tesla Powerwall and LG Chem RESU [15]. Flow batteries, especially vanadium redox systems [16], provide exceptional scalability and durability, rendering them suitable for large-scale solar farms and extended storage durations [17]. In addition to these existing technologies, emerging options including sodium-ion, solid-state, and saltwater batteries are poised to further transform the sector by tackling issues related to cost, safety, and sustainability [18].

Nevertheless, these gains, significant obstacles remain in enhancing battery performance, lowering costs, and guaranteeing environmental sustainability [19]. Critical concerns encompass heat regulation in lithium-ion systems, the recycling and disposal of hazardous elements (e.g., lead, cobalt), and the economic feasibility of extensive storage implementations [20]. The use of artificial intelligence (AI) and intelligent energy management systems is transforming the control and optimization of batteries in solar applications, facilitating predictive maintenance and dynamic load balancing [21]. Policymakers and industry leaders are increasingly emphasizing circular economy ideas to enhance battery recycling and second-life applications, especially for recycled electric vehicle (EV) batteries in solar storage [22].

The increasing global emphasis on transitioning to renewable energy resources positions solar energy as a pivotal contributor to future sustainable energy systems [23]. However, the inherent intermittency of solar power due to daily and seasonal variations as well as unpredictable weather conditions necessitates the development of reliable and efficient energy storage systems [24]. Energy storage in solar photovoltaic (PV) systems plays a critical role in bridging the temporal gaps between solar energy generation and electricity demand [25]. Without effective storage solutions, the ability of solar power plants to provide consistent and stable energy is compromised, undermining their grid reliability and limiting off-grid applications [26].

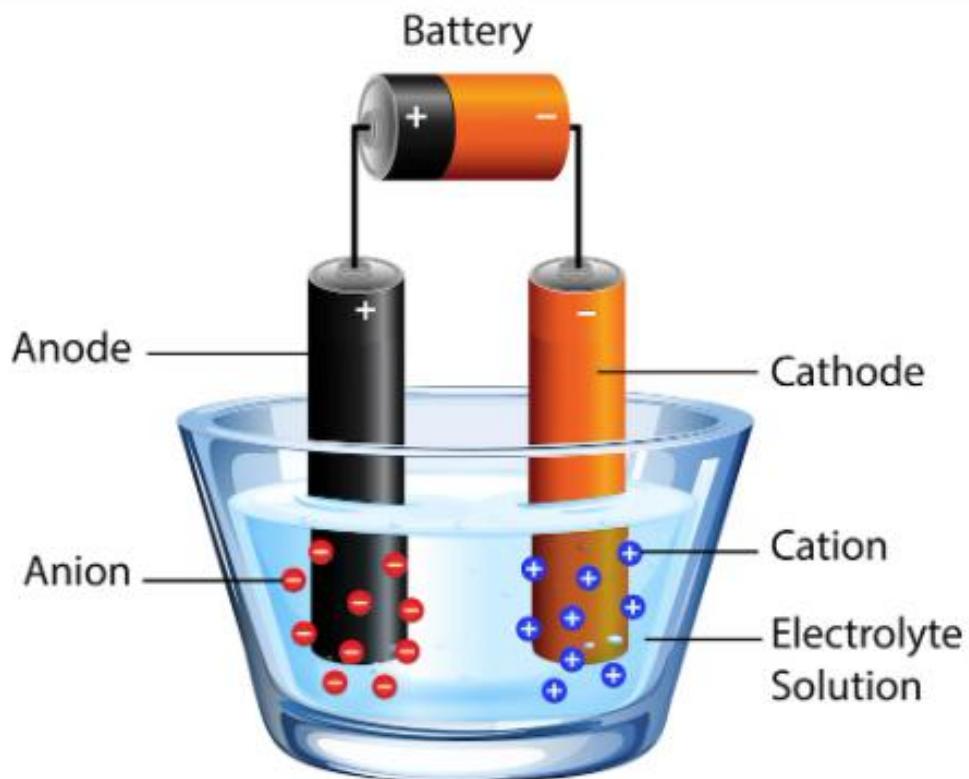
These storage systems are essential not only for smoothing fluctuations but also for stabilizing the grid, reducing curtailment, and ensuring energy availability during non-generation periods such as nighttime or cloudy days [27]. This functional necessity underpins extensive research and development efforts directed at advancing battery technologies tailored for solar energy integration. Despite progressive advancements, several challenges persist, including limitations in energy conversion efficiency, degradation mechanisms, and economic viability, all of which hinder broader adoption and optimization.

1.2 Overview of Battery Technologies for Solar Energy Storage

Among the various storage technologies, batteries have emerged as the most versatile and widely applied means for solar energy storage, owing to their capacity for rapid energy injection and extraction, scalability, and relatively high energy density. Commonly employed battery technologies span lead-acid variants, lithium-ion chemistries, flow batteries, and emerging alternatives like sodium-ion and metal-air batteries [28]. Each technology exhibits unique attributes in terms of capacity, energy and power efficiency, cycle life, depth of discharge limits, safety profiles, and cost structures.

Key performance parameters like capacity (Wh/kg), round-trip efficiency, cycle durability, and capital cost present trade-offs that influence the suitability of each battery type for specific solar energy applications. Moreover, the continued growth of solar installations has accelerated innovation, resulting in hybrid systems that integrate traditional batteries with supercapacitors or novel chemistries, aiming to optimize performance metrics further. These hybrid and emerging technologies show promise in addressing some of the limitations faced by conventional batteries, such as capacity fading and thermal management challenges.

1.3 Objectives and Scope of the Review


This review aims to provide a comprehensive and critical examination of energy storage batteries as they relate to solar energy systems. The discussion encompasses both the technological and economic dimensions pertinent to battery-based solar energy storage, including an in-depth evaluation of performance characteristics, system integration strategies, and sustainability considerations.

By synthesizing recent advancements, identifying persistent challenges, and exploring future directions, the paper endeavors to offer critical insights that can guide technology developers, policymakers, and researchers. Emphasis is placed on the techno-economic viability, environmental impact, and cutting-edge materials science breakthroughs enabling more efficient, durable, and cost-effective solar energy storage batteries [7], [8], [9].

This thorough evaluation seeks to deliver an in-depth overview of the battery technologies utilized in solar energy systems, assessing their technical attributes, operational benefits, and constraints. We conduct a thorough analysis of lead-acid, lithium-ion, and flow batteries, as well as emerging next-generation options, while emphasizing practical applications and case studies. Additionally, the report examines significant constraints, including financial obstacles, degrading processes, and safety concerns, while also investigating prospective trends, such as advancements in battery chemistry, hybrid storage solutions, and market expansion driven by governmental initiatives. This study consolidates recent research and commercial advancements, providing a significant resource for engineers, academics, and policymakers focused on sustainable and efficient solar energy storage technologies. The remaining section of the manuscript are classified into ... Sections. Section. Section. Section. Section. Section. while the closing section is discussing the summary of the conclusion followed by with list up to dated cited references from various sources taking in consideration the high ranked sources.

2 Overview of Solar Energy Storage Systems

Solar energy has developed as a highly promising renewable energy source, providing a clean and sustainable alternative to fossil fuels. The sporadic nature of solar power, resulting from daily and seasonal fluctuations in sunlight, requires effective energy storage technologies to provide a constant and dependable electricity supply. Energy storage systems (ESS) are essential for reconciling solar power generation with demand, allowing energy to be accumulated during peak production periods and released when required. Battery energy storage systems (BESS) have garnered considerable attention among diverse storage technologies owing to its scalability, decreasing costs, and technological progress based on the process that illustrated in Figure 1 and further explained in Table 1 [29].

Figure 1: Design of anode.

Table 1: Solar Energy Storage Systems.

Storage systems	Features
Need for Energy Storage in Solar Systems	<ul style="list-style-type: none"> - Intermittency of solar power (day-night cycles, weather dependence). - Demand-side management (load shifting, backup power). - Grid stabilization (frequency regulation, voltage support).
Types of Solar Energy Storage	<ul style="list-style-type: none"> - Battery Energy Storage Systems (BESS) - Focus of this review. - Thermal storage, pumped hydro, flywheels (brief comparison).

Solar battery storage systems serve as critical components in renewable energy infrastructure by addressing the intermittent nature of photovoltaic generation. They are similar to the mentioned types of batteries in Table 2.

Table 2: Battery Technologies for Solar Energy Storage [22].

	Flow Batteries	Lithium-Ion Batteries	Lead-Acid Batteries
Types	<ul style="list-style-type: none"> - Vanadium Redox - Zinc - Bromine 	<ul style="list-style-type: none"> - Lithium Cobalt Oxide - Lithium Manganese Oxide - Lithium Iron Phosphate - Lithium Nickel Manganese Cobalt Oxide 	<ul style="list-style-type: none"> - Flooded - AGM - Gel.

		<ul style="list-style-type: none"> - Lithium Nickel Cobalt Aluminum Oxide - Lithium Titanate - Solid-State (Emerging, no liquid electrolyte) 	
Chemistry	<ul style="list-style-type: none"> - Liquid electrolytes (e.g., vanadium in acid) in external tanks, separated by membrane 	<ul style="list-style-type: none"> - LiMn₂O₄ - Li₄Ti₅O₁₂ - LiFePO₄ - NMC - LCO - LiCoO₂ - LiNiMnCoO₂ - LiNiCoAlO₂ 	<ul style="list-style-type: none"> - Pb-PbO₂ in H₂SO₄ electrolyte.
Working Principle	<ul style="list-style-type: none"> - Liquid electrolytes. - Redox reactions. 	<ul style="list-style-type: none"> - Lithium ions shuttle between cathode and anode during charge/discharge via intercalation. 	<ul style="list-style-type: none"> - Discharge: Lead and lead dioxide react with sulfuric acid to form lead sulfate - charging reverses the process.
Advantages	<ul style="list-style-type: none"> - Scalability. - Long lifespan. - deep cycling. 	<ul style="list-style-type: none"> - High efficiency - Long cycle life - Lightweight. 	<ul style="list-style-type: none"> - Low cost - Reliability - Recyclability.
Disadvantages	<ul style="list-style-type: none"> - High upfront cost - complexity. 	<ul style="list-style-type: none"> - High cost - Thermal runaway risks. 	<ul style="list-style-type: none"> - Short lifespan - Low DoD - Maintenance needs.
Applications	<ul style="list-style-type: none"> - Large-scale solar farms - grid storage. 	<ul style="list-style-type: none"> - Residential/commercial solar - EVs. 	<ul style="list-style-type: none"> - Off-grid solar backup systems.

The solar energy storage sector is witnessing rapid innovation as researchers address key limitations of conventional battery systems. Emerging technologies promise transformative improvements in the considered features of the listed batteries as tabulated in Table 3.

Table 3: Emerging Battery Technologies [22].

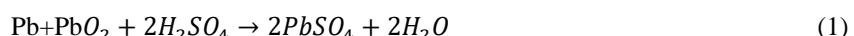
Batteries	Features
Sodium-Ion (Na-Ion)	<ul style="list-style-type: none"> - Low-cost alternative to Li-ion (~\$80–100/kWh). - Lower energy density (~100–150 Wh/kg). - Promising for stationary storage (e.g., CATL's Na-ion batteries).
Solid-State Batteries	<ul style="list-style-type: none"> - No liquid electrolyte → safer & higher energy density. - Challenges: Manufacturing scalability, high cost.
Saltwater Batteries	<ul style="list-style-type: none"> - Non-toxic & fully recyclable (aqueous electrolyte). - Low energy density (~70 Wh/kg) but ideal for off-grid eco-homes.

3 Battery Technologies for Solar Energy Storage

Energy storage is a critical component of solar power systems, ensuring stability, reliability, and efficient energy utilization as shown in Figure 2. This section provides a detailed technical analysis of the most widely used and emerging battery technologies in solar applications, including their electrochemical principles, performance characteristics, and suitability for different solar energy systems.

Figure 2: Energy storage integration system.

3.2 Lead-Acid Batteries


Lead-acid batteries, particularly sealed lead-acid (Valve-Regulated Lead-Acid, VRLA) and flooded lead-acid types have historically been the principal energy storage solution for solar energy systems due to their low initial cost and relatively mature technology. VRLA batteries are frequently preferred in solar applications for their maintenance-free design and better safety compared to flooded variants, which require regular electrolyte checks and ventilation.

Technical characteristics of lead-acid batteries in solar contexts include charging efficiency, which typically ranges around 75% to 85%, and a moderate cycle life usually between 500 and 1000 cycles. These batteries exhibit considerable sensitivity to temperature variations; for instance, capacity and lifespan degrade sharply at elevated temperatures. Self-discharge rates vary from 1% to 5% per month, which can affect storage during prolonged periods of inactivity. While lead-acid batteries offer affordable solutions for off-grid and backup systems, their drawbacks such as low energy density, limited cycle life compared to lithium-ion counterparts, and poor performance under deep discharge conditions constrain their expanded utility.

3.2.1 Chemistry & Working Principle

- Lead-acid batteries operate via an electrochemical reaction between lead (Pb) and lead dioxide (PbO₂) in a sulfuric acid (H₂SO₄) electrolyte.

- Discharge Reaction Equation is presented in Eq. (1):

- Charge Reaction is presented in Eq.(2):

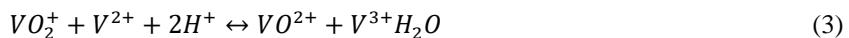
3.2.2 Types of Lead-Acid Batteries

Lead-acid batteries remain a cost-effective solution for solar applications despite newer technologies emerging. While the types of battery is tabulated in Table 4

Table 4: Types of Lead-Acid Batteries.

Types of Lead-Acid Batteries	Remarks
Flooded (Wet) Lead-Acid	<ul style="list-style-type: none"> - Requires regular maintenance (water topping-up). - Lowest cost but suffers from sulfation if undercharged. - Typical cycle life: 500–1000 cycles at 50% DoD.
Absorbent Glass Mat (AGM)	<ul style="list-style-type: none"> - No maintenance (electrolyte absorbed in fiberglass mats). - Faster charging, better resistance to vibration. - Used in off-grid solar and UPS systems.
Gel Batteries	<ul style="list-style-type: none"> - Gelified electrolyte reduces leakage risk. - Better deep-cycle performance but sensitive to overcharging. - Common in solar street lighting and marine applications.

Advantages & Limitations of Lead-Acid Batteries for Solar Energy Storage are tabulated in Table 5.


Table 5 Advantages & Limitations of lead acid.

Advantages	Limitations	Solar Applications
<ul style="list-style-type: none"> - Low upfront cost (~\$100–200/kWh) - High recyclability (>95%) - Good for off-grid applications - Reliable & well-understood tech - Ultra-long lifespan (>20 years) - 100% DoD without degradation - Scalable for grid storage. 	<ul style="list-style-type: none"> - Short lifespan (3–7 years) - Low DoD (50% max) - Requires ventilation (H₂ gas release) - Slow charging (C-rate ~0.2C) - Complex system (pumps, sensors needed) - High upfront cost (\$500–1000/kWh) - Low energy density (~25–50 Wh/kg). 	<ul style="list-style-type: none"> - Off-grid homes in rural areas (low-cost solution). - Backup power for telecom towers. - Small-scale solar projects with budget constraints. - Utility-scale solar farms (e.g., 100 MWh+ projects in China). - Military microgrids (long-duration storage). - Residential solar + storage (e.g., Tesla Powerwall, LG Chem RESU). - Commercial microgrids (high cycling demand). - EV-integrated solar systems (V2G applications).

3.3 Flow Batteries

3.3.1 Working Principle

- Liquid electrolytes (e.g., vanadium ions) stored in external tanks.
- Energy & power decoupled (capacity depends on tank size).
- Redox reactions occur in a cell stack:

The other type of batteries is flow battery that classified in Table 6.

Table 6 Types of Flow batteries.

Types of Flow batteries	Features
Vanadium Redox (VRFB)	<ul style="list-style-type: none"> - No cross-contamination (same element in both electrolytes). - Lifespan: 15,000+ cycles.
Zinc-Bromine (Zn-Br)	<ul style="list-style-type: none"> - Higher energy density but lower efficiency (~75%). - Lower cost than VRFB but shorter lifespan.

3.3.2 Chemistry & Variants

Lithium-ion batteries dominate modern solar storage due to their high energy density and efficiency. Key chemistries include is included in Table 7.

Table 7 Chemistry & Variants

Chemistry	Variants
Lithium Iron Phosphate (LiFePO ₄)	<ul style="list-style-type: none"> - Safest Li-ion chemistry (thermal runaway at >200°C vs. 150°C for NMC). - Long cycle life (3000–6000 cycles at 80% DoD). - Lower energy density (~120–160 Wh/kg) but stable performance.
Nickel Manganese Cobalt (NMC)	<ul style="list-style-type: none"> - Higher energy density (~200–250 Wh/kg). - Used in Tesla Powerwall, residential solar storage. - Shorter lifespan (~2000–4000 cycles).
Lithium Titanate (LTO)	<ul style="list-style-type: none"> - Ultra-fast charging (10C rate possible). - Exceptional lifespan (15,000+ cycles). - High cost limits use to niche applications (e.g., grid frequency regulation).

3.3.3 Performance Metrics

The Comparative Summary of Performance Metrics of various types of batteries are tabulated in Table 8. While the description is presented in Table 9.

Table 8: Comparative Summary of Performance Metrics.

Technology	Cost (\$/kWh)	Cycle Life	DoD	Efficiency	Energy Density	Best For	Lifespan (Years)
Lead-Acid	100–200	500–1200	50%	70–80%	30–50 Wh/kg	Off-grid, backup power	3–7
LiFePO ₄	300–600	3000–6000	80–100 %	95–98%	120–160 Wh/kg	Residential solar storage	10–15
Vanadium Flow	500–1000	15,000 +	100 %	75–85%	15–30 Wh/L	Grid-scale solar farms	15–20+
Na-Ion	80–100	2000–3000	80%	85–90%	75–120 Wh/kg	Low-cost stationary storage	10–15
NMC	250–500	2000–4000	80–90%	95–98%	200–250 Wh/kg	EVs, High-performance storage	8–12
LTO	800–1200	15,000 +	80–100 %	95–99%	70–90 Wh/kg	Fast charging, Long-life apps	15–20+

Technology	Cost (\$/kWh)	Cycle Life	DoD	Efficiency	Energy Density	Best For	Lifespan (Years)
Flow Batteries	500–1000	10,000+	100 %	75–85%	15–30 Wh/L	Grid-scale, Long-duration	20+
Saltwater	400–800	3000+	100 %	80%	30–60 Wh/L	Non-toxic, Safe storage	10+

Table 8 Battery comparison and description.

Battery Type	Energy Density (Wh/kg)	Cycle Life	Efficiency (%)	Cost (\$/kWh)	Typical Application
Lead-Acid (VRLA)	30-50	500-1000 cycles	75-85	100-200	Off-grid, backup systems
Lithium-Ion	150-250	2000-5000 cycles	90-95	250-500	Residential, grid-scale, EVs
Redox Flow	20-50	10000+ cycles	65-85	200-600	Grid-scale, long duration storage
LCO	High	500–1000	90-95	High	Phones, laptops
LMO	Medium	300–700	90-95	Medium	Power tools, medical devices
LFP	Medium	2000+	90-95	Low	EVs, solar storage
NMC	High	1000–2000	90-95	Medium	EVs, grid storage
NCA	Very High	1000–2000	90-95	High	Tesla EVs
LTO	Low	10,000+	95-98	Very High	Buses, fast-charging systems

3.4 Lithium-Ion Batteries

Lithium-ion batteries have become increasingly dominant in the solar storage market due to their high energy density, superior cycle life (often exceeding 2000 cycles), and higher round-trip efficiencies typically in the 90-95% range [30]. Various lithium-ion chemistries, including lithium iron phosphate (LFP), lithium nickel manganese cobalt oxide (NMC), and lithium cobalt oxide, tailor these batteries for diverse requirements balancing energy density, power capability, safety, and cost [31].

Thermal management is critical for li-ion battery longevity and safety, given their sensitivity to overheating and thermal runaway risks [32]. Advanced Battery Thermal Management Systems (BTMS) employing air, liquid, phase change materials (PCM), or thermoelectric cooling have seen notable innovations focused on maintaining optimal operating temperatures (between 285 K and 310 K), which significantly enhance battery performance and prevent premature degradation. Lithium-ion battery management systems (BMS) also play a vital role by safeguarding against overcharge/discharge, balancing cell voltages, and monitoring state-of-charge and health metrics, thereby optimizing system reliability in solar applications.

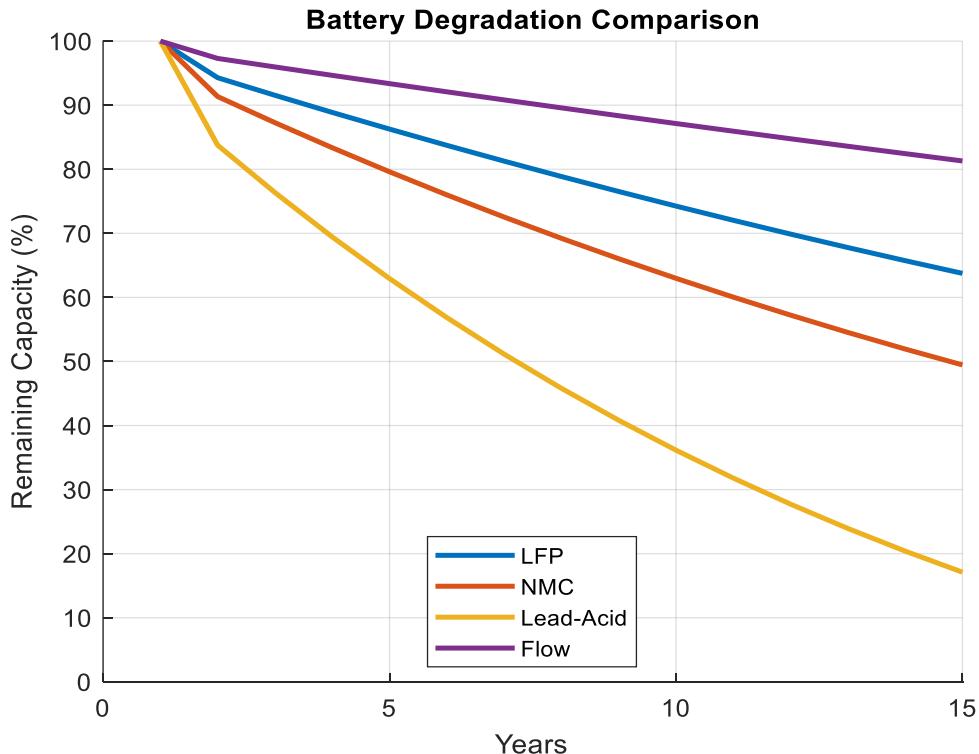
3.5 Alternative and Emerging Battery Technologies

While lithium-ion and lead-acid batteries currently dominate, alternative and emerging technologies are garnering attention for their potential to complement or replace existing chemistries in solar storage [30], [33]. Sodium-ion batteries, notable for using earth-abundant and inexpensive raw materials, offer promising grid-scale applications

by overcoming lithium resource limitations. Fe-based polyanionic oxide cathodes demonstrate promising cycle life and thermal stability, making sodium-ion batteries competitive for large-scale storage needs.

Redox flow batteries, which separate energy storage in liquid electrolytes from power delivery hardware, present advantages in scalability and cycle life, with beyond 10,000 cycles possible. Their discharge capacity is determined largely by electrolyte volume rather than cell size, favoring long-duration storage applications. Metal-air batteries and solid-state batteries are under development with goals to enhance energy density, safety, and longevity while minimizing environmental footprint. Hybrid energy storage systems amalgamate batteries with supercapacitors or ultracapacitors to leverage rapid discharge rates and high power density, mitigating battery stress and prolonging lifecycle, which is especially beneficial under fluctuating solar input conditions.

4. Performance Characteristics of Batteries in Solar Applications


4.1 Efficiency and Energy Conversion Metrics

The efficiency of energy storage batteries in solar systems is predominantly gauged through round-trip efficiency, which quantifies the fraction of input energy retrieved after a full charge-discharge cycle [34]. Variability in efficiency arises from charge/discharge rates, temperature, state of charge, and battery chemistry. Recent advances have focused on refining charging protocols, including innovative photo charging that utilizes direct solar cell-battery coupling, showing improved efficiency and reduced polarization effects relative to conventional constant current charging methods.

Table 9: Key Takeaways.

Batteries	Key Takeaways
Lead-acid	Economical but short-lived.
Li-ion	Best balance of efficiency & lifespan for homes.
Flow batteries	Ideal for large-scale, long-duration storage.
Emerging tech (Na-ion, solid-state):	Potential game-changers if costs drop.

Efficiency degradation over battery lifespan must also be accounted for in economic and performance analyses. Sophisticated models simulating degradation trends over operational periods help in forecasting levelized cost of storage (LCOS) and optimizing maintenance and replacement strategies. Real-world performance is further influenced by operating temperature, with optimal ranges critical for minimizing energy loss and capacity fade [35].

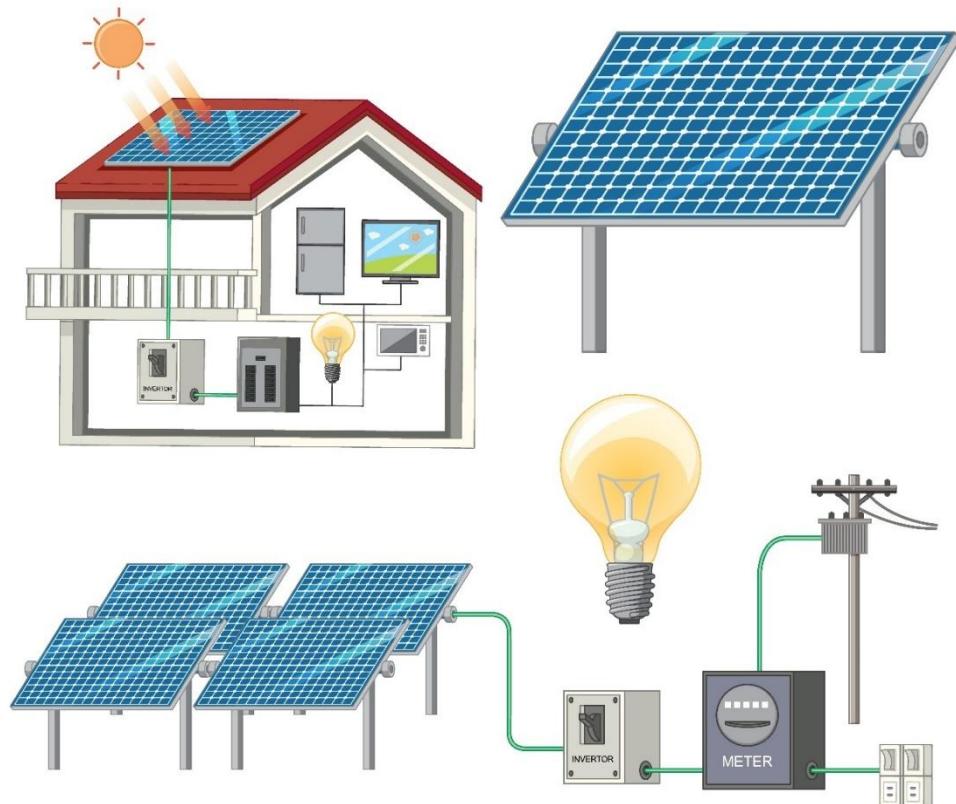
Figure 3 Battery degradation comparison

4.2 Cycle Life and Durability

Battery longevity is affected by various factors including thermal conditions, depth of discharge (DoD), charge rates, and cumulative cycling. Elevated temperatures accelerate capacity loss and can induce safety hazards, necessitating effective thermal management systems [36]. Hybrid and second-use batteries have been investigated as cost-effective means to extend service life and sustainability. Second-use electric vehicle (EV) batteries, typically retaining 80% residual capacity, are viable for stationary solar storage solutions after their primary automotive application ends.

Battery management and operational strategies aimed at minimizing deep discharges, controlling charge currents, and leveling power fluctuations are vital in prolonging cycle life. Tailored management systems and hybridization approaches, such as coupling lithium-ion batteries with supercapacitors, can further optimize durability metrics by reducing stress during transient loads [20], [12], [21].

4.3 Thermal Management and Safety Considerations


Thermal regulation is pivotal for battery performance in solar storage setups, particularly for chemistries prone to thermal runaway like lithium-ion. Recent innovations in battery thermal management systems integrate multiple cooling modalities air, liquid, PCM, and thermoelectric—to maintain safe temperature ranges and enhance energy efficiency. Hybrid cooling combines these techniques synergistically, offering substantial improvements over single-method designs.

Safety risk mitigation strategies also encompass battery management systems for real-time monitoring, fault detection, and balancing to prevent thermal instabilities and electrical failures. Advances in materials and design approaches continue to raise the safety standards for solar storage batteries, enabling wider adoption in residential and grid-scale applications.

5. Integration of Batteries with Solar Energy System

5.1 Off-Grid and Residential Solar Systems

In off-grid and residential solar systems, battery sizing and management are tailored to match specific load profiles generally characterized by daily or seasonal demand variations. Comprehensive battery selection considers technical factors like charge/discharge efficiencies, temperature effects, cycle life, and maintenance requirements.

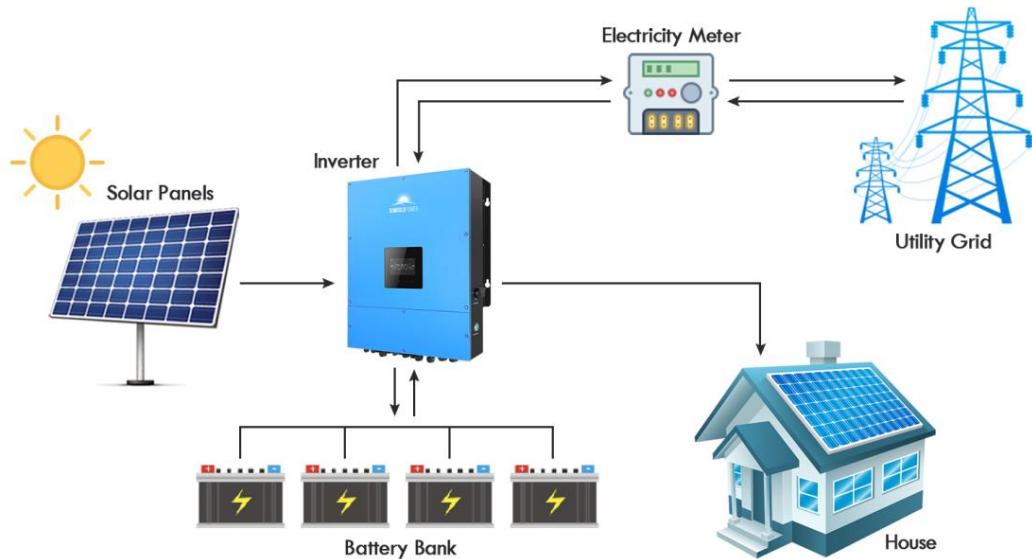


Figure (4): Off-Grid solar power system.

Comparative assessments indicate that lithium-ion batteries are often more favorable than lead-acid for off-grid use, owing to higher capacities, longer lifespans, and lower self-discharge. However, VRLA batteries remain an economical choice in regions where cost and maintenance constraints dominate. Hybrid energy storage systems combining batteries with supercapacitors have shown promise in residential settings by smoothing power peaks, reducing battery degradation, and extending overall system reliability. Effective battery management systems (BMS) incorporating charge balancing and health monitoring enhance operational robustness.

5.2 Grid-Scale and Utility Integration

Large-scale battery energy storage systems (BESS) integrated with solar PV plants serve critical roles in grid stability, frequency regulation, and energy arbitrage. The design of grid-scale integrations must address challenges around system sizing, cost-efficiency, and control optimization as demonstrated in Figure 5.

Figure 5 Integrated network

Innovative approaches like floating photovoltaic systems combined with BESS maximize land usage and leverage existing water resources, offering improved cooling and system efficiency. Case studies of large installations worldwide demonstrate the feasibility and economic benefits of sodium-sulfur and lithium iron phosphate battery systems at megawatt-hour scales. Optimization algorithms balance investment costs against operational efficiencies, ensuring that system deployments meet resiliency and reliability requirements.

5.3 Hybrid Energy Storage Systems and Smart Management

Hybrid energy storage architectures blend the complementary strengths of batteries and supercapacitors, delivering rapid response to power fluctuations alongside sustained energy supply. Control strategies, such as fuzzy logic and neural network-based algorithms, have been developed to optimize real-time power sharing between storage devices, increasing charging efficiency and extending battery life.

Battery management systems are also critical for integrating multiple storage technologies, overseeing charging/discharging cycles, protecting against operational anomalies, and maintaining system balance. The evolving landscape of smart management emphasizes predictive controls and AI-assisted optimization to enhance solar-battery synergy and grid compatibility.

6. Economic and Environmental Aspects of Battery Storage in Solar Systems

6.1 Techno-Economic Analysis and Levelized Cost of Storage (LCOS)

Economic assessments of battery energy storage coupled with solar PV installations consider capital costs, operational expenses, degradation rates, and efficiency trends, evaluated through metrics like Levelized Cost of Storage (LCOS). Analytical models incorporating battery degradation over time provide realistic investment outlooks, emphasizing the importance of frequent cycling to optimize profitability despite capacity fading.

Sensitivity analyses highlight that LCOS is heavily influenced by factors such as upfront costs, lifetime, discount rates, and round-trip efficiency, guiding deployment strategies for lithium-ion, proton-exchange membrane fuel

cells, and reversible solid oxide cells. Economic viability improves with technological advancement and cost reductions, suggesting a competitive future for battery storage in commercial and residential solar systems.

6.2 Environmental Impact and Sustainability Considerations

The environmental footprint of battery storage includes raw material extraction, manufacturing, use-phase emissions, and end-of-life disposal or recycling. Lifecycle analyses underscore the need to integrate sustainable practices throughout the battery supply chain to minimize ecological impacts.

Second-use battery systems employing repurposed EV batteries present a promising avenue to reduce waste and extend resource utilization, though regulatory and technical challenges must be addressed. Policy frameworks promoting recycling and safe disposal augment sustainability, mitigating negative environmental consequences and supporting circular economy objectives.

6.3 Regional and Application-Specific Economic Evaluations

Economic feasibility depends substantially on local climatic conditions, grid infrastructure, and market dynamics. Case studies from regions such as Sierra Leone demonstrate that sealed lead-acid batteries possess favorable charging efficiencies for tropical climates but suffer from thermal sensitivity affecting capacity.

Similarly, analyses of Greek islands reveal that pumped hydro storage remains economically competitive where geography permits, while lead-acid or lithium-ion batteries dominate in smaller, isolated grids depending on demand patterns and cost constraints. Turkish hydropower integrated with solar and battery storage confirms that medium-sized battery capacities optimize profit and system variability. These site-specific findings emphasize the necessity for tailored storage system design based on environmental and economic contexts.

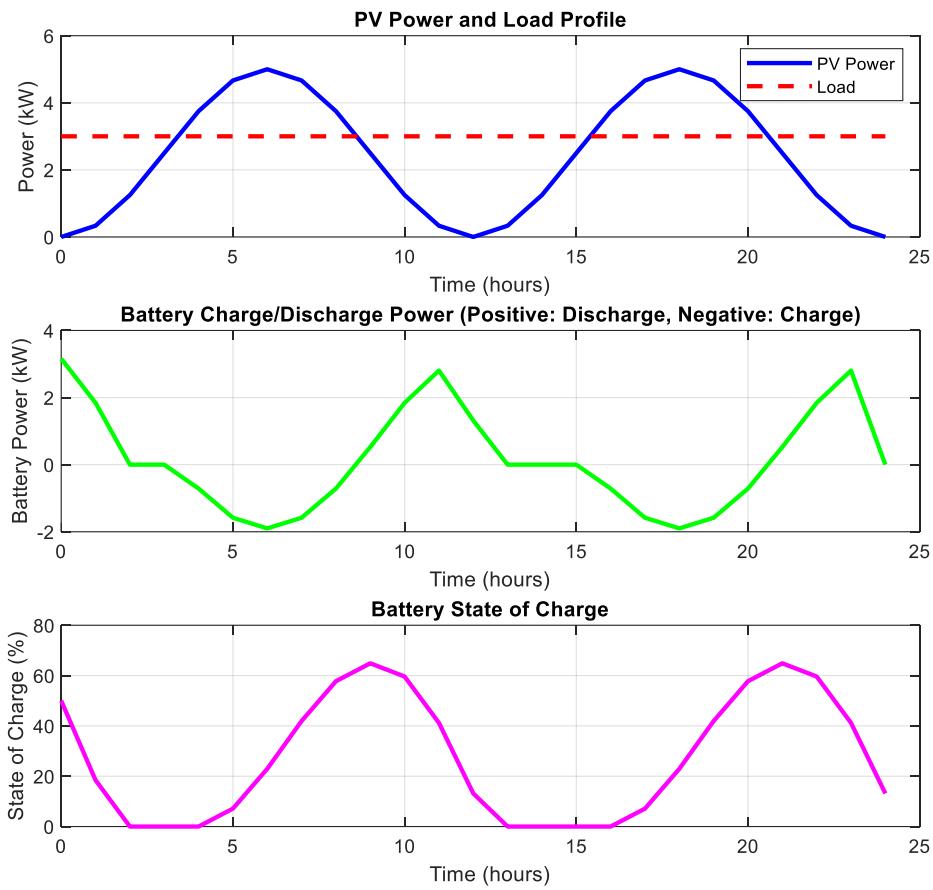
7. Optimization and Control Strategies for Battery Storage in Solar Systems

7.1 Battery Sizing and System Design

Determining optimal battery capacity is critical for matching energy supply with demand in solar systems. Methods typically involve evaluating load characteristics—including distinctions between linear and non-linear loads and employing integer linear programming or other optimization algorithms to tailor storage size effectively.

Studies show that lithium batteries generally outperform valve-regulated lead-acid batteries in both operational stability and energy output under diverse load conditions, with hybrid systems offering further optimization. Optimization ensures economic viability and prolongs battery life by preventing over- or under-sizing.

7.2 Charge-Discharge Management and Efficiency Enhancement


Maximizing charging efficiency enhances overall solar energy utilization. Integration of Maximum Power Point Tracking (MPPT) with battery charging circuits such as Cuk converters optimizes the harvesting of solar energy and controls battery state-of-charge (SOC) precisely.

Application of advanced control algorithms, including fuzzy logic and AI-based controllers, dynamically manages power flow between varied energy resources and loads, reducing energy waste during charging and load fluctuations. This results in improved battery longevity and system reliability [16], [19].

7.3 Hybrid and Multi-Storage System Arrangements

Hybridization of batteries with supercapacitors or ultracapacitors yields improved system responsiveness and lifecycle benefits. Models evaluating the degree of hybridization and the coefficient of synergistic effect offer insights into economic and performance trade-offs.

Such configurations enhance frequency response and buffer high-pulse loads, critical for grid stability and applications with dynamic power demands. However, economic feasibility must be assessed rigorously due to the general higher cost of supercapacitors relative to batteries. The performance comparison for PV power and load profile as in Figure 6 (a), Figure 6 (b) is shown the Battery (charge/discharge power), Figure (c) is shown the Battery state of charge.

Figure 6 Performance Comparison (a) PV Power and Load Profile, (b) Battery (charge/discharge power), (c) Battery state of charge.

8. Challenges and Limitations of Battery Energy Storage for Solar Systems

8.1 Technical Challenges

Key technical barriers include degradation mechanisms stemming from side reactions and energy level mismatches in coupled photochemical systems, which diminish efficiency and cycle stability. Thermal runaway and safety risks particularly affect high-energy-density batteries requiring robust management and fail-safe designs.

Material and design integration challenges remain in balancing device complexity against cost and durability, limiting practical deployment and scalability of novel designs.

- High Initial Costs (especially for Li-ion and flow batteries).
- Degradation & Lifespan (impact of temperature, cycling).
- Recycling & Environmental Concerns (Pb-acid vs. Li-ion disposal).
- Safety Risks (thermal runaway in Li-ion, gas venting in lead-acid).

8.2 Economic and Scalability Barriers

High upfront investment and uncertain payback periods continue to restrain widespread adoption, while supply chain vulnerabilities and material scarcity pose scalability constraints. Navigating the second-use battery market involves addressing technical heterogeneity, safety compliance, and regulatory frameworks that are still under development [3], [20], [34].

8.3 Environmental and Social Concerns

Lithium resource limitations and potential geopolitical challenges highlight the need for diversified chemistries and sustainable sourcing. Environmental concerns about battery production and disposal necessitate improved

recycling infrastructure, particularly in remote regions where maintenance capabilities are limited. These factors complicate deployment in off-grid or harsh environments.

9. Advances in Battery Materials and Nanotechnology

9.1 Nanomaterials and Quantum Dots in Batteries

Nanotechnology has significantly influenced advancements in battery technologies by enabling higher energy densities, improved cycling stability, and faster charge/discharge kinetics. Nanostructured electrode materials demonstrate enhanced surface area and porosity, facilitating superior ion transport and electron conductivity.

Quantum dots and conductive polymer composites have been incorporated in battery electrodes and supercapacitors, providing flexible, efficient energy storage options with rapid charge capabilities. Despite remarkable progress, challenges remain in achieving cost-effective large-scale synthesis, ensuring long-term stability, and integrating these materials into commercially viable devices.

9.2 Photochemical and Photo-Responsive Batteries

Photochemical storage materials and photo-responsive battery systems represent an emerging frontier, aiming to integrate solar energy capture and storage within single devices. Solar rechargeable batteries leverage the coupling of photochemical processes with electrochemical storage, potentially achieving direct solar-to-electrical energy conversion with improved efficiency.

Photoelectrochemical redox batteries utilize dye sensitizers and photoelectrodes to harvest solar energy, with recent developments focusing on dye design, membrane optimization, and electrode architecture. Solar flow batteries combine photovoltaic and redox flow battery functionalities, producing record solar-to-output efficiencies. Molecular photo isomers and metal sulfide photoelectrodes likewise contribute to innovative photo-rechargeable battery designs with enhanced performance and sustainability prospects.

9.3 Emerging Cathode and Anode Materials

Progress in cathode and anode materials includes the exploration of Fe-based polyanionic oxides for sodium-ion batteries, exhibiting high thermal stability, extended cycle life, and adjustable voltages conducive for grid-scale storage. Metal sulfide photoelectrodes, such as CdS integrated with graphene oxide, have been developed to mitigate polysulfide shuttle effects in lithium-sulfur batteries, significantly improving redox kinetics and solar-to-electrical energy conversion efficiency.

Nanostructured carbon materials like graphene and silicon nanowires contribute to enhanced electrode performance by increasing energy density and mechanical robustness. Continuous advancements in solid-state battery electrode design aim to bolster safety, energy density, and cycle life, playing a critical role in next-generation solar energy storage solutions.

10. Future Prospects and Research Directions

10.1 Innovations in Battery Chemistry and Materials

Emerging chemistries focused on abundant materials such as sodium-ion and metal-air batteries promise to alleviate resource constraints while maintaining performance. Advancements in nanotechnology, molecular photo isomers, and novel electrode compositions offer pathways for marked improvements in energy density, stability, and multifunctionality.

Solid-state and hybrid battery systems show potential to combine superior safety with higher energy storage capabilities, representing critical areas for future research.

- Second-Life Batteries (repurposing EV batteries for solar storage).
- AI & Smart Battery Management (optimizing charge/discharge cycles).
- Hybrid Storage Systems (combining batteries with supercapacitors).
- Policy & Incentives (government support for solar + storage).

10.2 Advanced Integration and System Architectures

Smart grid-compatible, hybrid energy storage systems combining batteries with supercapacitors, thermal storage, and other technologies will become increasingly prevalent. Integration of AI, machine learning, and IoT-enabled control systems is anticipated to optimize solar-battery interactions, improving forecasting, efficiency, and resilience in distributed energy systems.

10.3 Policy, Economic Incentives, and Market Trends

Supportive policy frameworks, subsidies, and incentives are essential to accelerate adoption and deployment of advanced battery energy storage. Economic models focusing on sustainable and scalable solutions will aid in overcoming capital cost barriers. Market trends indicate substantial growth in second-use batteries, battery recycling, and off-grid applications, highlighting opportunities for sustainable industry evolution.

11. Conclusion & Recommendations

- Lead-acid remains cost-effective for small-scale systems.
- Lithium-ion dominates for efficiency and lifespan but needs cost reduction.
- Flow batteries are ideal for grid-scale storage.
- Future research should focus on sustainability, cost reduction, and recycling.

10.1 Summary of Key Findings

This review elaborates on the diversity of battery technologies applicable to solar energy storage, emphasizing their unique performance attributes and integration approaches. Scientific and technological advancements have enhanced efficiency, cycle life, and sustainability, while techno-economic analyses illuminate pathways toward cost-effective deployment.

Overall, lithium-ion batteries currently offer the best balance of performance and cost for many solar applications, but emerging alternatives and hybrid solutions are poised to augment future systems significantly.

10.2 Remaining Knowledge Gaps and Challenges

Outstanding challenges include addressing material degradation, cost reduction, environmental sustainability, and optimized system management. Further research is necessary to refine materials, improve integrated system designs, and establish robust operational protocols under various environmental conditions.

10.3 Recommendations for Future Research and Deployment

Future efforts should focus on developing sustainable materials, optimizing hybrid energy storage architectures, and advancing real-world validation of techno-economic models. Policy-driven support and international collaboration will be indispensable for realizing the full potential of battery energy storage in expanding solar energy penetration globally.

References

- [1] E. Hossain, H. Faruque, M. Sunny, N. Mohammad, and N. Nawar, “A Comprehensive Review on Energy Storage Systems: Types, Comparison, Current Scenario, Applications, Barriers, and Potential Solutions, Policies, and Future Prospects,” *Energies*, vol. 13, no. 14, p. 3651, Jul. 2020, doi: 10.3390/en13143651.
- [2] M. J. Palys, H. Wang, Q. Zhang, and P. Daoutidis, “Renewable ammonia for sustainable energy and agriculture: vision and systems engineering opportunities,” *Curr. Opin. Chem. Eng.*, vol. 31, p. 100667, 2021, doi: 10.1016/j.coche.2020.100667.
- [3] O. M. Mohammed, “Renewable Energy: Sources, Integration and Application: Review Article,” *J. Eng. Res. Reports*, vol. 20, no. 12, pp. 143–161, Sep. 2021, doi: 10.9734/jerr/2021/v20i1217426.
- [4] T. Lehtola and A. Zahedi, “Solar energy and wind power supply supported by storage technology: A review,” *Sustain. Energy Technol. Assessments*, vol. 35, pp. 25–31, Oct. 2019, doi: 10.1016/j.seta.2019.05.013.
- [5] I.-S. Sorlei et al., “Fuel Cell Electric Vehicles—A Brief Review of Current Topologies and Energy Management Strategies,” *Energies*, vol. 14, no. 1, p. 252, Jan. 2021, doi: 10.3390/en14010252.
- [6] W. Tushar et al., “Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges,” *Appl. Energy*, vol. 282, pp. 1–33, 2021, doi: 10.1016/j.apenergy.2020.116131.
- [7] A. Hussain and P. Musilek, “Resilience Enhancement Strategies For and Through Electric Vehicles,” *Sustain. Cities Soc.*, vol. 80, no. February, p. 103788, 2022, doi: 10.1016/j.scs.2022.103788.
- [8] M. A. Hannan et al., “Vehicle to grid connected technologies and charging strategies: Operation, control, issues and recommendations,” 2022, Elsevier B.V. doi: 10.1016/j.jclepro.2022.130587.
- [9] K. Doshi and V. S. K. V. Harish, “Analysis of a wind-PV battery hybrid renewable energy system for a dc microgrid,” *Mater. Today Proc.*, 2020, doi: <https://doi.org/10.1016/j.matpr.2020.09.194>.
- [10] X. Li et al., “Optimal design and techno-economic analysis of renewable-based multi-carrier energy systems for industries: A case study of a food factory in China,” *Energy*, vol. 244, p. 123174, Apr. 2022, doi: 10.1016/j.energy.2022.123174.

[11] C. Chumchal and D. Kurzweil, Lead-acid battery operation in micro-hybrid and electrified vehicles. Elsevier B.V., 2017. doi: 10.1016/B978-0-444-63700-0.00013-1.

[12] M. M. Khaleel, T. Mohamed Ghandoori, A. Ali Ahmed, A. Alsharif, A. J. Ahmed Alnagrat, and A. Ali Abulifa, “Impact of Mechanical Storage System Technologies: A Powerful Combination to Empowered the Electrical Grids Application,” in 2022 IEEE 2nd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA), IEEE, May 2022, pp. 628–636. doi: 10.1109/MI-STA54861.2022.9837670.

[13] H. HassanzadehFard, F. Tooryan, E. R. Collins, S. Jin, and B. Ramezani, “Design and optimum energy management of a hybrid renewable energy system based on efficient various hydrogen production,” *Int. J. Hydrogen Energy*, vol. 45, no. 55, pp. 30113–30128, 2020, doi: 10.1016/j.ijhydene.2020.08.040.

[14] M. Muratori et al., “Technology solutions to mitigate electricity cost for electric vehicle DC fast charging,” *Appl. Energy*, vol. 242, pp. 415–423, May 2019, doi: 10.1016/j.apenergy.2019.03.061.

[15] M.-K. Tran et al., “Environmental and Economic Benefits of a Battery Electric Vehicle Powertrain with a Zinc–Air Range Extender in the Transition to Electric Vehicles,” *Vehicles*, vol. 2, no. 3, pp. 398–412, Jun. 2020, doi: 10.3390/vehicles2030021.

[16] R. Hassan, B. K. Das, and M. Hasan, “Integrated off-grid hybrid renewable energy system optimization based on economic, environmental, and social indicators for sustainable development,” *Energy*, vol. 250, p. 123823, Jul. 2022, doi: 10.1016/j.energy.2022.123823.

[17] M. İnci, M. M. Savrun, and Ö. Çelik, “Integrating electric vehicles as virtual power plants: A comprehensive review on vehicle-to-grid (V2G) concepts, interface topologies, marketing and future prospects,” *J. Energy Storage*, vol. 55, no. August, p. 105579, Nov. 2022, doi: 10.1016/j.est.2022.105579.

[18] Z. A. Arfeen et al., “Energy storage usages: Engineering reactions, economic-technological values for electric vehicles-A technological outlook,” *Int. Trans. Electr. Energy Syst.*, no. March, p. e12422, Apr. 2020, doi: 10.1002/2050-7038.12422.

[19] M. Li, R. Shan, A. Abdulla, J. Tian, and S. Gao, “High energy capacity or high power rating : Which is the more important performance metric for battery energy storage systems at different penetrations of variable renewables ?,” *J. Energy Storage*, vol. 59, no. 37, p. 106560, 2023, doi: 10.1016/j.est.2022.106560.

[20] M. İnci, M. M. Savrun, and Ö. Çelik, “Integrating electric vehicles as virtual power plants: A comprehensive review on vehicle-to-grid (V2G) concepts, interface topologies, marketing and future prospects,” *J. Energy Storage*, vol. 55, no. March, p. 105579, Nov. 2022, doi: 10.1016/j.est.2022.105579.

[21] M. Khaleel, A. A. Ahmed, and A. Alsharif, “Artificial Intelligence in Engineering,” *Brill. Res. Artif. Intell.*, vol. 3, no. 1, pp. 32–42, Mar. 2023, doi: 10.47709/brilliance.v3i1.2170.

[22] K. Ogura and M. L. Kolhe, “Battery technologies for electric vehicles,” in *Electric Vehicles: Prospects and Challenges*, Elsevier, 2017, pp. 139–167. doi: 10.1016/B978-0-12-803021-9.00004-5.

[23] N. Butzen and M. Steyaert, *Advanced Multiphasing Switched-Capacitor DC-DC Converters*. Cham: Springer International Publishing, 2020. doi: 10.1007/978-3-030-38735-8.

[24] B. Modu, M. P. Abdullah, and A. L. Bukar, “Hybrid Reaching Law-Based Integral Sliding Mode Control for DC Microgrid,” in 2022 IEEE 20th Student Conference on Research and Development (SCOReD), IEEE, Nov. 2022, pp. 92–95. doi: 10.1109/SCOReD57082.2022.9974053.

[25] A. Alsharif et al., “Ant Lion Optimization of On-Grid Supported by PV/Wind Considering Libyan Energy,” *Sci. Proc. Ser.*, vol. 3, no. 1, pp. 9–15, Jun. 2021, doi: 10.31580/sps.v3i1.1886.

[26] A. Alsharif et al., “Applications of Solar Energy Technologies in North Africa: Current Practices and Future Prospects,” *Int. J. Electr. Eng. Sustain.*, vol. 1, no. 3, pp. 164–174, 2023, [Online]. Available: <https://ijees.org/index.php/ijees/index>

[27] Mohamed G Moh Almihat, Abdulgader Alsharif, Salem A. Al-Hashmi, Abdussalam Ali Ahmed, and Mohamed Belrzaeg, “Design and control of a stand-alone microgrid with renewable energy sources,” *Int. J. Sci. Res. Arch.*, vol. 10, no. 2, pp. 468–479, Nov. 2023, doi: 10.30574/ijjsra.2023.10.2.0974.

[28] A. Alsharif, C. W. Tan, R. Ayop, A. Ali Ahmed, M. Mohamed Khaleel, and A. K. Abobaker, “Power Management and Sizing Optimization for Hybrid Grid-Dependent System Considering Photovoltaic Wind Battery Electric Vehicle,” in 2022 IEEE 2nd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA), IEEE, May 2022, pp. 645–649. doi: 10.1109/MI-STA54861.2022.9837749.

[29] C. Acar, E. Erturk, and I. Firtina-Ertis, “Performance analysis of a stand-alone integrated solar hydrogen energy system for zero energy buildings,” *Int. J. Hydrogen Energy*, vol. 48, no. 5, pp. 1664–1684, 2023, doi: 10.1016/j.ijhydene.2022.10.051.

[30] J. A. Sanguesa, V. Torres-Sanz, P. Garrido, F. J. Martinez, and J. M. Marquez-Barja, “A Review on Electric Vehicles: Technologies and Challenges,” *Smart Cities*, vol. 4, no. 1, pp. 372–404, Mar. 2021, doi: 10.3390/smartcities4010022.

[31] A. Carnovale and X. Li, “A modeling and experimental study of capacity fade for lithium-ion batteries,” *Energy AI*, vol. 2, p. 100032, 2020, doi: 10.1016/j.egyai.2020.100032.

[32] Mc. Guerrero Delgado, J. Sánchez Ramos, S. Álvarez Domínguez, J. A. Tenorio Ríos, and L. F. Cabeza, “Building thermal storage technology: Compensating renewable energy fluctuations,” *J. Energy Storage*, vol. 27, no. June 2019, p. 101147, Feb. 2020, doi: 10.1016/j.est.2019.101147.

[33] M. Ramesh and R. P. Saini, “Dispatch strategies based performance analysis of a hybrid renewable energy system for a remote rural area in India,” *J. Clean. Prod.*, vol. 259, p. 120697, 2020, doi: 10.1016/j.jclepro.2020.120697.

[34] E. M. Scheme, “An improved antlion sizing optimization for vehicle-to-grid system using rule-based energy management scheme,” p. 81310, 2022.

[35] M. A. F. Hamad and M. K. H. Mohammed, “Investigation and Modelling of a Dual Solar Photovoltaic System for Consistent Energy Supply at Al-Brega Clinic, Libya,” *Journal of Scientific and Human Dimensions*, pp. 96–106, 2025.

[36] A. Bassam, R. Elhashmi, and A. Abdulghafur, “Green Hydrogen Production in Libya: Opportunities for Harnessing Solar Energy to Achieve Sustainable Development and Economic Diversification,” *Journal of Scientific and Human Dimensions*, pp. 161–172, 2025.

[37] Solman, F. I., Abdulkarim, Z. H., Salih, S. A., & Faraj, N. F. (2026). Design, Implementation, and Techno-Economic-Environmental Assessment of a Hybrid Solar Energy System: A Case Study of an Educational Institution in Al-Qubbah, Libya. *Journal of Insights in Basic and Applied Sciences*, 82-111.

[38] Alsharif, A., Ibrahim, A. A., Waheshi, Y. A. A., Alsharif, M., Alhoudier, T. E., Esmail, E. M. A., & Dalla, L. O. F. B. (2025). An Analysis of Power Sector Investment by Technology in the Middle East and North Africa. *African Journal of Academic Publishing in Science and Technology (AJAPST)*, 1(4), 25-39.

[39] Alsharif, A., Abuali, T. M., Ahmed, A. A., & Alghiriyani, S. G. S. (2025). The State-of-the-Art of Electrification of Internet of Energy (IoE) for Electric Vehicles Considering Smart Grids. *African Journal of Academic Publishing in Science and Technology (AJAPST)*, 24-34.

[40] Zhang, G., Liu, H., Xie, T., Li, H., Zhang, K., & Wang, R. (2024). Research on the dispatching of electric vehicles participating in vehicle-to-grid interaction: considering grid stability and user benefits. *Energies*, 17(4), 812.

[41] Almihat, M. G. M., Alsharif, A., Al-Hashmi, S. A., Ahmed, A. A., & Belrzaeg, M. (2023). Design and control of a stand-alone microgrid with renewable energy sources. *International Journal of Science and Research Archive*, 10(2), 468-479.

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of **JIBAS** and/or the editor(s). **JIBAS** and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.