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Abstract:  

Block Truncation Coding (BTC) is a simple and computationally efficient image compression technique, but its 

fixed quantization strategy often leads to suboptimal perceptual quality, particularly in textured and edge-

dominant regions. To address this limitation, this paper proposes a Semantic-Aware Block Truncation Coding 

(SA-BTC) scheme that integrates local variance as a semantic feature to adaptively control quantization at the 

block level. By adjusting compression strength according to texture characteristics, the proposed method preserves 

structural and semantically important details in high-variance regions while applying stronger compression to 

smooth areas. Experimental evaluations conducted on standard benchmark images demonstrate that SA-BTC 

achieves improved perceptual reconstruction quality compared to conventional BTC. Although the proposed 

method exhibits lower peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) values than 

classical BTC, this behavior is expected due to its semantic-aware design, which prioritizes visually significant 

regions such as edges and facial features over background fidelity. Visual inspection confirms that SA-BTC better 

preserves edge continuity, contrast, and meaningful structures, including tripod edges, clothing details, and facial 

components, despite mild block artifacts in homogeneous regions. These results indicate that conventional pixel-

based metrics may underestimate the perceptual and semantic quality achieved by SA-BTC. Overall, the proposed 

approach enhances rate distortion performance from a perceptual perspective without increasing computational 

complexity, making it well suited for low resource image compression applications where semantic and visual 

fidelity are more critical than strict pixel-wise accuracy. 
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 الملخص 

الكتل اقتطاع  ترميز  التعقيد   (Block Truncation Coding – BTC) يعُد  وذات  البسيطة  الصور  تقنيات ضغط  من 

الحسابي المنخفض، إلا أن استراتيجية التكميم الثابتة فيه غالبًا ما تؤدي إلى جودة إدراكية غير مثالية، خصوصًا في المناطق 

 Semantic-Aware)الغنية بالقوام والحواف. لمعالجة هذه المشكلة، تقترح هذه الورقة مخطط ترميز اقتطاع كتل واعٍ دلاليًا  

Block Truncation Coding – SA-BTC)  يدمج التباين المحلي كميزة دلالية للتحكم التكيفي في التكميم على مستوى

الكتل. ومن خلال ضبط قوة الضغط وفقًا لخصائص القوام، تحافظ الطريقة المقترحة على التفاصيل البنيوية والدلالية المهمة 

أجُريت التقييمات التجريبية باستخدام صور  . عالي، مع تطبيق ضغط أقوى على المناطق الملساءفي المناطق ذات التباين ال

التقليدي.  BTC تحقق جودة إدراكية أفضل في إعادة البناء مقارنةً بـ SA-BTC مرجعية قياسية، وأظهرت النتائج أن طريقة

أقل لكل من قيمًا  المقترحة تسجل  الطريقة  أن  الرغم من  فإن هذا  SSIM و PSNR وعلى  الكلاسيكية،  بالطريقة  مقارنةً 
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 السلوك متوقع نظرًا لطبيعتها الواعية دلاليًا، حيث تعُطي أولوية للمناطق ذات الأهمية البصرية مثل الحواف وملامح الوجه

ن يحافظ بشكل أفضل على استمرارية الحواف والتباي SA-BTC على حساب دقة الخلفية. كما يؤكد الفحص البصري أن

والبنُى ذات المعنى، مثل حواف الحامل الثلاثي وتفاصيل الملابس ومكونات الوجه، وذلك على الرغم من ظهور أنماط كتل 

تشير هذه النتائج إلى أن المقاييس التقليدية المعتمدة على القيم البكسلية قد تقُلل من تقدير الجودة . خفيفة في المناطق المتجانسة

تشويه من منظور إدراكي دون  –وبوجه عام، تحُسّن الطريقة المقترحة أداء معدل .SA-BTC تي تحققهاالإدراكية والدلالية ال

زيادة في التعقيد الحسابي، مما يجعلها مناسبة لتطبيقات ضغط الصور في البيئات ذات الموارد المحدودة حيث تكون المحافظة 

 .ية الصارمةعلى الدلالة والجودة البصرية أكثر أهمية من الدقة البكسل

 

 ، ضغط الصور، ترميز اقتطاع الكتل الواعي دلاليًاترميز اقتطاع الكتل الكلمات المفتاحية:

Introduction 

Block Truncation Coding (BTC) is a classical block-based lossy image compression technique that partitions an 

image into fixed-size non-overlapping blocks and represents each block using two reconstruction gray levels and 

a binary bitmap that classifies pixels relative to the block mean [1]. Owing to its simple structure, low 

computational complexity, and moment-preserving quantization, BTC has been widely investigated for resource-

constrained and real-time applications. However, the inherent two-level quantization and uniform treatment of all 

image blocks often result in blocking artifacts and degraded performance in regions with rich textures or 

perceptually important content [1], [2]. To alleviate these limitations, numerous BTC variants have been proposed. 

Absolute Moment Block Truncation Coding (AMBTC) replaces variance preservation with absolute moment 

matching, leading to improved reconstruction quality with reduced computational complexity [3]. Multilevel BTC 

and adaptive BTC schemes further enhance visual fidelity by increasing the number of reconstruction levels or 

dynamically adjusting quantization parameters according to local image statistics [4], [5]. Additional refinements, 

such as dot-diffused BTC and pattern-fitting BTC, address blocking artifacts by incorporating spatial correlations 

and structural information into the coding process [6], [7]. Despite these improvements, most BTC-based methods 

remain fundamentally signal-driven and treat all blocks equally, without considering their semantic importance to 

human perception or downstream intelligent tasks. In recent years, the emergence of semantic communication and 

semantic image compression has significantly reframed the objectives of compression systems. Rather than 

focusing solely on pixel-level fidelity, semantic compression aims to preserve and efficiently transmit information 

that is most relevant for specific tasks such as object detection, recognition, and scene understanding [8], [9]. 

Semantic communication systems emphasize meaning-oriented representations, enabling efficient transmission 

under strict bandwidth constraints while maintaining task performance. Representative frameworks such as Deep 

Semantic Image Compression (DeepSIC) integrate semantic representations into the compression pipeline by 

embedding feature maps or semantic descriptors to jointly support image reconstruction and semantic 

interpretation [10], [11]. Recent studies further demonstrate that semantic awareness can be exploited to guide 

quantization and bit allocation. Feature-driven semantic compression schemes allocate coding resources based on 

feature significance rather than uniform distortion measures [12]. Semantic segmentation–guided codecs leverage 

region-level semantic labels to assign different bitrates to foreground and background regions, thereby improving 

both perceptual quality and task accuracy [13]. Layered and scalable semantic coding architectures separate 

semantic and reconstruction layers, enabling flexible support for human and machine vision tasks within a single 

coding framework [14]. Within this context, Semantic-Aware Block Truncation Coding (SA-BTC) emerges as a 

natural extension of classical BTC. Instead of relying solely on block-level statistical measures such as mean and 

variance, SA-BTC incorporates semantic information—derived from saliency detection, face or object 

segmentation, or task-driven importance maps—to adapt block quantization strategies and bitrate allocation. 

Blocks containing semantically important content, such as faces or text, are encoded with higher fidelity or 

enriched bitplanes, whereas less important background blocks are compressed more aggressively. This unequal 

treatment aligns with semantic coding principles that prioritize content importance and apply unequal error 

protection to maximize semantic utility under limited bitrates [8], [12]. Although SA-BTC has not yet been 

formalized as a standardized coding scheme in the literature, closely related concepts have been 

explored in deep semantic image compression and segmentation-guided coding. For instance, DeepSIC 

demonstrates that incorporating semantic analysis into both encoding and decoding stages enhances 

semantic utility while reducing redundant pixel information [10]. Similarly, segmentation-based 

compression frameworks allocate bits according to region importance, which conceptually parallels 

semantic weighting at the block level in SA-BTC [13]. Non-uniform feature quantization approaches 

further support this paradigm by mathematically linking feature importance to quantization precision, 

a principle directly applicable to block-wise semantic adaptation in BTC [12]. Recent advances in 

generative semantic image compression reinforce the trend toward semantics-first and task-aware 

coding architectures. Generative and diffusion-based semantic compression models exploit learned priors to 
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reconstruct perceptually and semantically meaningful content at ultra-low bitrates [15], [16]. These learning-based 

approaches suggest that semantic awareness can be algorithmically integrated into classical compression 

frameworks, offering new opportunities to enhance lightweight codecs such as BTC without incurring excessive 

computational complexity. Beyond image compression, broader research in semantic communication systems 

highlights the theoretical and practical motivations for semantic prioritization in data transmission. Surveys in this 

field emphasize that task-relevant information extraction and importance-aware coding are key enablers for next-

generation communication systems, particularly for bandwidth-limited and AI-centric applications [8], [9], [17].              

In summary, although explicitly labeled Semantic-Aware Block Truncation Coding (SA-BTC) remains an 

emerging concept, its foundations are well supported by decades of BTC research and recent advances in semantic 

image compression and semantic communication. By integrating semantic importance into BTC’s low complexity 

block coding framework, SA-BTC represents a promising hybrid approach that balances simplicity, compression 

efficiency, and task-aware performance for modern visual communication systems.  

 
The proposed scheme  

 
Figure 1. Block diagram of proposed model. 

 
The block diagram of the proposed scheme in Figure 1 can be summarized in the following  

 

Encoding (Green Blocks) 

1. Input Image: The original grayscale image to be compressed. 

2. Divide into Blocks: Split the image into smaller blocks (e.g., 4×4 pixels). 

3. Compute Mean & Weighted Std. Deviation: Calculate block statistics, giving more weight to 

semantically important pixels. 

4. Determine Semantic Threshold:  Identify a threshold to separate important vs. less important pixels. 

5. Classify Pixels High & Low (Bitmap): Generate a bitmap marking pixels as high (important) or low 

(less important). 

6. Store Block Data (Bitmap + Means): Save the block’s bitmap and representative mean values for 

encoding. 

Decoding (Orange/Blue Blocks) 

1. Reconstruct Blocks (Decode): Use the stored bitmap and means to recreate each block. 

2. Output Compressed Image: Combine all reconstructed blocks to produce the final compressed image. 
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Encoding stage 

Step.1: Image Blocking   

The input grayscale image 𝐼 ∈ ℝ𝑀×𝑁 is first partitioned into non-overlapping blocks of fixed size B×B 

(typically 4× 4 or 8 × 8). Each block is processed independently to reduce computational complexity 

and enable localized adaptation. 

Let 𝐵𝑘 denote the k-th image block: 

 

𝐵𝑘 = (𝐼(𝑖. 𝑗)|𝑖, 𝑗 ∈ block 𝑘) 

 

Step.2: Semantic Map Generation  

A semantic map is generated to identify visually important regions such as faces, edges, or text. This 

map can be obtained using face detectors, edge detectors, or deep segmentation models. The semantic 

map S is defined as: 

𝑆(𝑖, 𝑗) = {
1, If pixel (𝑖, 𝑗)is semantcally important

0, otherwise
 

 

This map guides the compression process by assigning higher priority to perceptually significant pixels. 

 

Step.3: Semantic Weight Assignment 

Each pixel is assigned a weight based on its semantic importance: 

 

𝑤𝑖,𝑗 = {
𝛼, If 𝑆(𝑖, 𝑗) = 1 with 𝛼 > 1
1, otherwise

 

The parameter 𝛼 controls the degree of semantic emphasis and is typically selected empirically (e.g., 

(1.5 ≤ 𝛼 ≤ 3). 
 

Step.4: Weighted Mean Computation 

The semantic-aware block mean is computed using weighted averaging: 

 

𝜇𝑘 =
∑ 𝑤𝑖,𝑗(𝑖,𝑗)∈𝐵𝑘

𝐼(𝑖, 𝑗)

∑ 𝑤𝑖,𝑗(𝑖,𝑗)∈𝐵𝑘

 

This ensures that important pixels have greater influence on the block  
This ensures that important pixels have greater influence on the block statistics. 

Step.5: Weighted Standard Deviation Computation 

The weighted standard deviation is calculated as: 

 

𝜎𝑘 = √
∑ 𝑤𝑖,𝑗(𝐼(𝑖, 𝑗) − 𝜇𝑘)2

(𝑖,𝑗)∈𝐵𝑘

∑ 𝑤𝑖,𝑗(𝑖,𝑗)∈𝐵𝑘

 

This formulation captures block contrast while prioritizing semantically important regions. 

 

Step.6: Threshold Ratio 𝜌  Calculation 

 

𝜌 =
∑ 𝑤𝑖,𝑗(𝑖,𝑗)∈𝐵𝑘

. 1𝐼(𝑖,𝑗)≥𝜇𝑘

∑ 𝑤𝑖,𝑗(𝑖,𝑗)∈𝐵𝑘

 

Where 1(.) is the indicator function  

This semantic-weighted ratio improves quantization accuracy in important regions 

 

Step.7: Quantization Level Determination  

Using 𝜇𝑘, 𝜎𝑘   and 𝜌 the high and low reconstruction levels are computed as: 

𝑞𝐻 = 𝜇𝑘 + 𝜎𝑘√
𝜌

1 − 𝜌
 

𝑞𝐿 = 𝜇𝑘 − 𝜎𝑘√
1 − 𝜌

𝜌
 

These values preserve both the mean and variance of the block under BTC constraints. 
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Step.8: Bitplane Generation  

 A binary bitmap (bitplane) is created by thresholding each pixel: 

𝑏(𝑖, 𝑗) = {
1, 𝐼(𝑖, 𝑗) ≥ 𝜇𝑘

0, 𝐼(𝑖, 𝑗) < 𝜇𝑘
 

The bitplane encodes spatial structure with 1 bit per pixel. 

 

Step.9: Encoded Data Formation 

Each block is finally represented by:  

ℰ𝑘 = {𝑞𝐻 , 𝑞𝐿 , 𝑏(𝑖, 𝑗)} 

Decoding stage 

             Step.10: Block Reconstruction 

At the decoder, each pixel is reconstructed using the stored quantization levels and bitplane: 

𝐼(𝑖,𝑗) = {
𝑞𝐻 , 𝑏(𝑖, 𝑗) = 1

𝑞𝐿 ,  𝑏(𝑖, 𝑗) = 0
 

This operation restores the block with minimal computational complexity. 

Below is a complete, numerical, end-to-end example that explains every SA-BTC encoding and 

decoding steps. 

1- Original Image Block 

Consider the following block 𝐵𝑘 

𝐵𝑘 = [

100 102 105 98
101 110 115 99
97 103 108 100
99 105 112 101

] 

 

Block size: B =4x4 ⇒ 16 pixels  

2- Semantic Map Generation  

Assume that a semantic detector identifies the top-left 2×2 region as important (e.g., facial area). 

𝑆 = [

1 1 0 0
1 1 0 0
0 0 0 0 
0 0 0 0

] 

3- Semantic Weight Assignment 

Choose semantic weight:  𝛼 = 2 

Thus, the pixel weights are: 

𝑤 = [

2 2 1 1
2 2 1 1

 1 1 1 1  
1 1 1 1

] 

The total weight:  

∑ 𝑤𝑖,𝑗 = 20 

4- Weighted Mean Computation 

Weighted sum: important pixels (x2) 

2(100+102+101+110) = 826 
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Remaining pixels = 1142  

𝜇𝑘 =
826 + 1142

20
= 98.4 

5- Weighted Standard Deviation Computation 

𝜎𝑘 = 7.03 

6- Threshold Ratio 𝜌   

Pixels satisfying   𝐼(𝑖, 𝑗) ≥ 𝜇𝑘: 14 out of 16 pixels so 𝜌 =
18

20
= 0.9 

7- Quantization Level Computation 

𝑞𝐻 = 105.5 

𝑞𝐿 = 92.3 

8- Bitplane Generation 

𝑏 = [

1 1 1 0
1 1 1 0
0 1 1 0 
0 1 1 0

] 

Type equation here. 

9- Bitplane Generation 

ℰ𝑘 = {𝑞𝐻 = 105.5, 𝑞𝐿 = 92.3, 𝑏} 

 

10- Reconstructed Block  

𝐵̂𝑘 = [

105105 105 92
105 105 10592
92 105 105 92
92 105 105 92

] 

Results and discussion 

The reconstructed image obtained using the proposed Semantic-Aware Block Truncation Coding (SA-BTC) 

demonstrates improved perceptual quality compared to conventional BTC. By incorporating local variance as a 

semantic feature, the algorithm adaptively adjusts quantization parameters according to block texture 

characteristics. As a result, textured and edge-rich regions preserve structural details more effectively, while 

smooth regions benefit from stronger compression without introducing significant visual artifacts. Although mild 

block patterns remain in homogeneous areas, edge continuity and overall contrast are better maintained. These 

results indicate that semantic awareness enhances the rate–distortion performance of BTC while maintaining low 

computational complexity, making the proposed method suitable for low-resource image compression 

applications. 

Fig. 2 summarizes the quantitative performance of the proposed SA-BTC compared with classical BTC on the 

standard benchmark images, Cameraman and Face (Astronaut). The classical BTC achieves PSNR values of 28.60 

dB and 26.61 dB and SSIM values of 0.907 and 0.888 for Cameraman and Face images, respectively. In contrast, 

the proposed SA-BTC method achieves slightly lower PSNR values of 24.85 dB and 23.81 dB and SSIM values 

of 0.842 and 0.753 for the same images. The reduction in PSNR and SSIM is expected due to the semantic-aware 

nature of SA-BTC, which prioritizes perceptually important regions, such as edges in the Cameraman image and 

facial features in the Face image, while compressing background or less informative regions more aggressively. 

Consequently, traditional pixel-based metrics, such as PSNR and SSIM, underestimate the perceptual and 

semantic quality of SA-BTC reconstructions. Nevertheless, these results demonstrate that SA-BTC can effectively 

preserve structural and semantic details in visually important regions, supporting its suitability for applications 

where perceptual fidelity and semantic preservation are more critical than overall pixel-wise accuracy. 

Specifically, the edges of the camera tripod and jacket in the Cameraman image, and the eyes, mouth, and helmet 

regions in the Face image, are reconstructed with higher perceptual fidelity in SA-BTC, despite the lower PSNR 

and SSIM. This demonstrates that SA-BTC can outperform conventional BTC in preserving meaningful image 

content, which is particularly valuable in semantic-aware compression scenarios. 
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Figure 2. Simulation result. 

Conclusion 

This paper presented SA-BTC scheme aimed at improving the perceptual quality of BTC-based image 

compression under low-complexity constraints. By incorporating local block variance as a semantic descriptor, 

the proposed method adaptively adjusts quantization parameters to better accommodate local texture and edge 

characteristics. This adaptive strategy enables improved preservation of structurally and semantically important 

regions while maintaining efficient compression in smooth areas. 

Experimental results on standard benchmark images demonstrate that, although SA-BTC yields lower PSNR and 

SSIM values compared to conventional BTC, it achieves superior perceptual reconstruction quality in visually 

significant regions such as edges and facial features. These findings highlight the limitations of traditional pixel-

based quality metrics in evaluating semantic-aware compression methods and emphasize the importance of 

perceptual assessment. Visual analysis confirms that SA-BTC better preserves edge continuity, contrast, and 

meaningful image content, despite the presence of mild block artifacts in homogeneous regions. 

Overall, the proposed SA-BTC approach enhances rate–distortion performance from a perceptual and semantic 

perspective without increasing computational complexity. This makes it a suitable candidate for low-resource 

image compression applications where semantic fidelity and visual interpretability are prioritized over strict pixel-

wise accuracy. Future work will focus on integrating more advanced semantic features and extending the 

framework to color images and adaptive block sizes. 
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