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Abstract:

Block Truncation Coding (BTC) is a simple and computationally efficient image compression technique, but its
fixed quantization strategy often leads to suboptimal perceptual quality, particularly in textured and edge-
dominant regions. To address this limitation, this paper proposes a Semantic-Aware Block Truncation Coding
(SA-BTC) scheme that integrates local variance as a semantic feature to adaptively control quantization at the
block level. By adjusting compression strength according to texture characteristics, the proposed method preserves
structural and semantically important details in high-variance regions while applying stronger compression to
smooth areas. Experimental evaluations conducted on standard benchmark images demonstrate that SA-BTC
achieves improved perceptual reconstruction quality compared to conventional BTC. Although the proposed
method exhibits lower peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) values than
classical BTC, this behavior is expected due to its semantic-aware design, which prioritizes visually significant
regions such as edges and facial features over background fidelity. Visual inspection confirms that SA-BTC better
preserves edge continuity, contrast, and meaningful structures, including tripod edges, clothing details, and facial
components, despite mild block artifacts in homogeneous regions. These results indicate that conventional pixel-
based metrics may underestimate the perceptual and semantic quality achieved by SA-BTC. Overall, the proposed
approach enhances rate distortion performance from a perceptual perspective without increasing computational
complexity, making it well suited for low resource image compression applications where semantic and visual
fidelity are more critical than strict pixel-wise accuracy.
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Introduction

Block Truncation Coding (BTC) is a classical block-based lossy image compression technique that partitions an
image into fixed-size non-overlapping blocks and represents each block using two reconstruction gray levels and
a binary bitmap that classifies pixels relative to the block mean [1]. Owing to its simple structure, low
computational complexity, and moment-preserving quantization, BTC has been widely investigated for resource-
constrained and real-time applications. However, the inherent two-level quantization and uniform treatment of all
image blocks often result in blocking artifacts and degraded performance in regions with rich textures or
perceptually important content [1], [2]. To alleviate these limitations, numerous BTC variants have been proposed.
Absolute Moment Block Truncation Coding (AMBTC) replaces variance preservation with absolute moment
matching, leading to improved reconstruction quality with reduced computational complexity [3]. Multilevel BTC
and adaptive BTC schemes further enhance visual fidelity by increasing the number of reconstruction levels or
dynamically adjusting quantization parameters according to local image statistics [4], [5]. Additional refinements,
such as dot-diffused BTC and pattern-fitting BTC, address blocking artifacts by incorporating spatial correlations
and structural information into the coding process [6], [7]. Despite these improvements, most BTC-based methods
remain fundamentally signal-driven and treat all blocks equally, without considering their semantic importance to
human perception or downstream intelligent tasks. In recent years, the emergence of semantic communication and
semantic image compression has significantly reframed the objectives of compression systems. Rather than
focusing solely on pixel-level fidelity, semantic compression aims to preserve and efficiently transmit information
that is most relevant for specific tasks such as object detection, recognition, and scene understanding [8], [9].
Semantic communication systems emphasize meaning-oriented representations, enabling efficient transmission
under strict bandwidth constraints while maintaining task performance. Representative frameworks such as Deep
Semantic Image Compression (DeepSIC) integrate semantic representations into the compression pipeline by
embedding feature maps or semantic descriptors to jointly support image reconstruction and semantic
interpretation [10], [11]. Recent studies further demonstrate that semantic awareness can be exploited to guide
quantization and bit allocation. Feature-driven semantic compression schemes allocate coding resources based on
feature significance rather than uniform distortion measures [12]. Semantic segmentation—guided codecs leverage
region-level semantic labels to assign different bitrates to foreground and background regions, thereby improving
both perceptual quality and task accuracy [13]. Layered and scalable semantic coding architectures separate
semantic and reconstruction layers, enabling flexible support for human and machine vision tasks within a single
coding framework [14]. Within this context, Semantic-Aware Block Truncation Coding (SA-BTC) emerges as a
natural extension of classical BTC. Instead of relying solely on block-level statistical measures such as mean and
variance, SA-BTC incorporates semantic information—derived from saliency detection, face or object
segmentation, or task-driven importance maps—to adapt block quantization strategies and bitrate allocation.
Blocks containing semantically important content, such as faces or text, are encoded with higher fidelity or
enriched bitplanes, whereas less important background blocks are compressed more aggressively. This unequal
treatment aligns with semantic coding principles that prioritize content importance and apply unequal error
protection to maximize semantic utility under limited bitrates [8], [12]. Although SA-BTC has not yet been
formalized as a standardized coding scheme in the literature, closely related concepts have been
explored in deep semantic image compression and segmentation-guided coding. For instance, DeepSIC
demonstrates that incorporating semantic analysis into both encoding and decoding stages enhances
semantic utility while reducing redundant pixel information [10]. Similarly, segmentation-based
compression frameworks allocate bits according to region importance, which conceptually parallels
semantic weighting at the block level in SA-BTC [13]. Non-uniform feature quantization approaches
further support this paradigm by mathematically linking feature importance to quantization precision,
a principle directly applicable to block-wise semantic adaptation in BTC [12]. Recent advances in
generative semantic image compression reinforce the trend toward semantics-first and task-aware
coding architectures. Generative and diffusion-based semantic compression models exploit learned priors to
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reconstruct perceptually and semantically meaningful content at ultra-low bitrates [15], [16]. These learning-based
approaches suggest that semantic awareness can be algorithmically integrated into classical compression
frameworks, offering new opportunities to enhance lightweight codecs such as BTC without incurring excessive
computational complexity. Beyond image compression, broader research in semantic communication systems
highlights the theoretical and practical motivations for semantic prioritization in data transmission. Surveys in this
field emphasize that task-relevant information extraction and importance-aware coding are key enablers for next-
generation communication systems, particularly for bandwidth-limited and Al-centric applications [8], [9], [17].
In summary, although explicitly labeled Semantic-Aware Block Truncation Coding (SA-BTC) remains an
emerging concept, its foundations are well supported by decades of BTC research and recent advances in semantic
image compression and semantic communication. By integrating semantic importance into BTC’s low complexity
block coding framework, SA-BTC represents a promising hybrid approach that balances simplicity, compression
efficiency, and task-aware performance for modern visual communication systems.

The proposed scheme
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Figure 1. Block diagram of proposed model.

The block diagram of the proposed scheme in Figure 1 can be summarized in the following

Encoding (Green Blocks)

1. Input Image: The original grayscale image to be compressed.

2. Divide into Blocks: Split the image into smaller blocks (e.g., 4x4 pixels).

3. Compute Mean & Weighted Std. Deviation: Calculate block statistics, giving more weight to
semantically important pixels.

4. Determine Semantic Threshold: Identify a threshold to separate important vs. less important pixels.

5. Classify Pixels High & Low (Bitmap): Generate a bitmap marking pixels as high (important) or low
(less important).

6. Store Block Data (Bitmap + Means): Save the block’s bitmap and representative mean values for
encoding.
Decoding (Orange/Blue Blocks)

1. Reconstruct Blocks (Decode): Use the stored bitmap and means to recreate each block.

2. Output Compressed Image: Combine all reconstructed blocks to produce the final compressed image.
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Encoding stage

Step.1: Image Blocking

The input grayscale image I € RM™*N is first partitioned into non-overlapping blocks of fixed size BxB
(typically 4x 4 or 8 x 8). Each block is processed independently to reduce computational complexity
and enable localized adaptation.

Let B, denote the k-th image block:

By = (I(i. )i, j € block k)

Step.2: Semantic Map Generation
A semantic map is generated to identify visually important regions such as faces, edges, or text. This
map can be obtained using face detectors, edge detectors, or deep segmentation models. The semantic
map S is defined as:
. 1, If pixel (i, j)is semantcally important
S@N = .
0, otherwise

This map guides the compression process by assigning higher priority to perceptually significant pixels.

Step.3: Semantic Weight Assignment
Each pixel is assigned a weight based on its semantic importance:

S {a, IfSGE,j) =1witha>1
L1, otherwise

The parameter a controls the degree of semantic emphasis and is typically selected empirically (e.g.,

(15<a<3).

Step.4: Weighted Mean Computation
The semantic-aware block mean is computed using weighted averaging:

X pes Wi 1))
Y =

20, )eB, Wi j

This ensures that important pixels have greater influence on the block statistics.
Step.5: Weighted Standard Deviation Computation
The weighted standard deviation is calculated as:

Z(i'j)EBk Wi, j UHEITE
O'k =

Y (i yeBi Wij
This formulation captures block contrast while prioritizing semantically important regions.

Step.6: Threshold Ratio p Calculation

_ Zapes Wij - Licpzm

L(i.jenr Wij
Where 1, is the indicator function
This semantic-weighted ratio improves quantization accuracy in important regions

Step.7: Quantization Level Determination
Using py, g, and p the high and low reconstruction levels are computed as:

R P
1-p

p
These values preserve both the mean and variance of the block under BTC constraints.

qL = U — Ok

115 | Journal of Insights in Basic and Applied Sciences



Step.8: Bitplane Generation
A binary bitmap (bitplane) is created by thresholding each pixel:
b(i,j) = { oo
( ]) 0, I(l']) < U
The bitplane encodes spatial structure with 1 bit per pixel.

Step.9: Encoded Data Formation
Each block is finally represented by:

& =1{qu, 1, b))}
Decoding stage

Step.10: Block Reconstruction
At the decoder, each pixel is reconstructed using the stored quantization levels and bitplane:
[ {qH. b(i,j) =1
(U) qL! b(l!]) = 0
This operation restores the block with minimal computational complexity.

Below is a complete, numerical, end-to-end example that explains every SA-BTC encoding and
decoding steps.

1- Original Image Block
Consider the following block By,

100 102 10598
10111011599
97 103 108 100
99105112 101

Bk=

Block size: B =4x4 = 16 pixels
2- Semantic Map Generation
Assume that a semantic detector identifies the top-left 2x2 region as important (e.qg., facial area).

1100
1100
0000
0000

3- Semantic Weight Assignment
Choose semantic weight: a =2
Thus, the pixel weights are:

2211
2211
1111
1111

The total weight:

Xw; ;=20
4- Weighted Mean Computation
Weighted sum: important pixels (x2)
2(100+102+101+110) = 826
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Remaining pixels = 1142

_ 826 + 1142 _ 984
Ui = 20 = J0.

5-  Weighted Standard Deviation Computation
o, = 7.03
6- Threshold Ratio p
Pixels satisfying I(i,j) = uy: 14 out of 16 pixels so p = g =09
7- Quantization Level Computation
qy = 105.5
q, = 92.3
8- Bitplane Generation

1110
1110
“lo110

0110

Type equation here.

9- Bitplane Generation
Ek = {qH = 1055, qL = 923, b}

10- Reconstructed Block

10510510592
105 105 10592
9210510592
9210510592

o)
=
Il

Results and discussion

The reconstructed image obtained using the proposed Semantic-Aware Block Truncation Coding (SA-BTC)
demonstrates improved perceptual quality compared to conventional BTC. By incorporating local variance as a
semantic feature, the algorithm adaptively adjusts quantization parameters according to block texture
characteristics. As a result, textured and edge-rich regions preserve structural details more effectively, while
smooth regions benefit from stronger compression without introducing significant visual artifacts. Although mild
block patterns remain in homogeneous areas, edge continuity and overall contrast are better maintained. These
results indicate that semantic awareness enhances the rate—distortion performance of BTC while maintaining low
computational complexity, making the proposed method suitable for low-resource image compression
applications.

Fig. 2 summarizes the quantitative performance of the proposed SA-BTC compared with classical BTC on the
standard benchmark images, Cameraman and Face (Astronaut). The classical BTC achieves PSNR values of 28.60
dB and 26.61 dB and SSIM values of 0.907 and 0.888 for Cameraman and Face images, respectively. In contrast,
the proposed SA-BTC method achieves slightly lower PSNR values of 24.85 dB and 23.81 dB and SSIM values
of 0.842 and 0.753 for the same images. The reduction in PSNR and SSIM is expected due to the semantic-aware
nature of SA-BTC, which prioritizes perceptually important regions, such as edges in the Cameraman image and
facial features in the Face image, while compressing background or less informative regions more aggressively.
Consequently, traditional pixel-based metrics, such as PSNR and SSIM, underestimate the perceptual and
semantic quality of SA-BTC reconstructions. Nevertheless, these results demonstrate that SA-BTC can effectively
preserve structural and semantic details in visually important regions, supporting its suitability for applications
where perceptual fidelity and semantic preservation are more critical than overall pixel-wise accuracy.

Specifically, the edges of the camera tripod and jacket in the Cameraman image, and the eyes, mouth, and helmet
regions in the Face image, are reconstructed with higher perceptual fidelity in SA-BTC, despite the lower PSNR
and SSIM. This demonstrates that SA-BTC can outperform conventional BTC in preserving meaningful image
content, which is particularly valuable in semantic-aware compression scenarios.
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Cameraman - Original BTC SA-BTC

Figure 2. Simulation result.

Conclusion

This paper presented SA-BTC scheme aimed at improving the perceptual quality of BTC-based image
compression under low-complexity constraints. By incorporating local block variance as a semantic descriptor,
the proposed method adaptively adjusts quantization parameters to better accommodate local texture and edge
characteristics. This adaptive strategy enables improved preservation of structurally and semantically important
regions while maintaining efficient compression in smooth areas.

Experimental results on standard benchmark images demonstrate that, although SA-BTC yields lower PSNR and
SSIM values compared to conventional BTC, it achieves superior perceptual reconstruction quality in visually
significant regions such as edges and facial features. These findings highlight the limitations of traditional pixel-
based quality metrics in evaluating semantic-aware compression methods and emphasize the importance of
perceptual assessment. Visual analysis confirms that SA-BTC better preserves edge continuity, contrast, and
meaningful image content, despite the presence of mild block artifacts in homogeneous regions.

Overall, the proposed SA-BTC approach enhances rate—distortion performance from a perceptual and semantic
perspective without increasing computational complexity. This makes it a suitable candidate for low-resource
image compression applications where semantic fidelity and visual interpretability are prioritized over strict pixel-
wise accuracy. Future work will focus on integrating more advanced semantic features and extending the
framework to color images and adaptive block sizes.
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