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Abstract:  

This study presents a mathematical model to investigate the transmission dynamics of measles in a population 

following the introduction of vaccination. The population is divided into four epidemiological compartments: 

Susceptible (𝑆), Vaccinated (𝑉), Infected (𝐼), and Recovered (𝑅). A key feature of the model is the inclusion of 

waning immunity induced by vaccination over time. A thorough mathematical analysis is performed to establish 

the positivity and boundedness of the model solutions, along with the existence and local stability of equilibrium 

points. Furthermore, the model is analyzed for the occurrence of local bifurcations, including Hopf bifurcations, 

to identify potential complex dynamical behaviors. Numerical simulations are conducted to validate the analytical 

findings and assess the influence of key parameters on the system dynamics.  
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 الملخص 

إدخال التطعيم. يقُسَّم السكان  تمعٍ ما بعد  تقدم هذه الدراسة نموذجًا رياضيًا لدراسة ديناميكيات انتقال مرض الحصبة في مج

. ، والمتعافون (I) ن، والمصابو (V)، والمطعَّمون(S) إلى أربع فئات وبائية: القابلون للإصابة (R) وتتمثل إحدى السمات

 .الأساسية للنموذج في تضمين تلاشي المناعة الناتجة عن التطعيم بمرور الزمن

رياضي شامل لإثبات   تحليل  واستقرارها يجُرى  التوازن  نقاط  دراسة وجود  إلى جانب  النموذج،  إيجابية وحدودية حلول 

ف، بهدف تحديد السلوكيات  ، بما في ذلك تشعبات هوبحليةلدراسة حدوث التشعبات الم  . علاوة على ذلك، يحُلَّل النموذجمحليال

النتا من  للتحقق  عددية  محاكاة  تجُرى  كما  المحتملة.  المعقدة  الرئيسالديناميكية  المعلمات  تأثير  وتقييم  التحليلية  على يئج  ة 

 . ديناميكيات النظام

 

  التطعيم.، الاستقرار،  لحصبة، اتشعب المحليال الكلمات المفتاحية:

Introduction 

    Measles is a highly contagious viral disease with historical descriptions dating back to the 9th century, and the 

first detailed clinical account distinguishing it from other diseases was provided by Persian physician al-Razi in 

the 10th century. The causative virus was later isolated in the 20th century and the first licensed vaccine became 
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available in 1963 [1]. the world experienced millions of cases and hundreds of thousands of deaths every year. 

The measles vaccine is considered one of the most effective vaccines, leading to a significant decrease in cases 

and deaths associated with the disease. There are two doses of the measles vaccine; the first dose should be given 

at 12-15 months of age, while the second dose is usually administered at 4-6 years of age [2]. However, some 

recent studies [3], [4] have indicated a potential decline in the vaccine’s effectiveness over time. These studies 

revealed that two doses of the vaccine may not provide lifelong immunity as previously believed, and that 

protection may diminish slightly each year. This decline in immunity could explain the increase in measles cases 

despite receiving vaccinations in childhood.  

Mathematical models are of great importance in analyzing and understanding the dynamics of infectious diseases 

and epidemic spread, developing control policies, and formulating strategies to contain them. Interest in this field 

began with the famous SIR model introduced by Kermark and Mckendrick in 1927 [5]. This model established 

the first mathematical framework for studying and describing diseases transmitted through direct contact or 

interaction. Since then, scientific research and studies have advanced, and researchers have expanded this basic 

simple model to include various factors such as vaccination, treatment stages, immunity, and individual behavior 

within the community. For instance, researchers Kribs-Zaleta and Velasco-Hernandez presented in 2000 [6] an 

SIS type model incorporating the effect of development, Arino et al. [7], modified the traditional model to allow 

recovered individuals to enter a temporary immunity class instead of returning directly to the susceptible class, 

reflecting the nature of certain diseases that require clarification of this stage. Other studies focused on evaluating 

the effectiveness and impact of vaccination in reducing diseases. For instance, the study by Kribs-Zaleta and 

Martcheva [8] addressed the effect of vaccines in curbing the spread of diseases like Hepatitis (A, B). Meanwhile, 

SVIR models, as in the research of Alexander et al. [9] and Shim [10], focused on the spread dynamics of influenza 

in the presence of vaccines. On the other hand, studies such as d’Onofrio et al. [11] presented models to analyze 

and understand the impact of an individual’s behaviors and decisions regarding vaccination on disease spread. 

Bifurcation theory is an important branch of mathematics that specializes in studying qualitative or topological 

changes that occur or emerge in the structure of mathematical systems, such as the transformation of integral 

curves of vector fields or solutions of various differential equations. The importance and application of this theory 

lie primarily in the study and analysis of dynamical systems, where bifurcation occurs when a slight modification 

or change in parameter values (bifurcation parameters) leads to a radical change in the qualitative or topological 

behavior of the system, as illustrated in [12], [13], [14]. Bifurcation occurs in both continuous dynamical systems 

(represented by ordinary differential equations ODEs, delay differential equations DDEs, or partial differential 

equations PDEs; for example, see [15], [16], [17], [18], [19] and discrete dynamical systems (represented by maps; 

see, for example, [19], [20], [21], [22], [23], [24]. The term "bifurcation" was first introduced in 1885 by Henri 

Poincaré [27] in seminal mathematical research addressing this phenomenon. He named and classified different 

types of fixed points and described their characteristics. Perko L. [25] established the fundamental conditions for 

the occurrence of local bifurcation (such as saddle-node bifurcation, transcritical bifurcation, and pitchfork 

bifurcation). As for Hopf bifurcation, the necessary condition for its occurrence was formulated by Hirsch and 

Smale S. [26], while Haque M. and Venturino E. [27] explained the sufficient condition for the occurrence of this 

type of bifurcation. see, for example, [28], [29], [30]. In the same context, previous research efforts include studies 

by K. Qahtan Khalf et al. [31], and R. Kamel Naji and A. Ali Muhseen [32] on local bifurcation patterns and Hopf 

bifurcation around equilibrium points. 

    This study presents an SVIR-type mathematical model describing the spread dynamics of measles in the 

population. While our model uses a similar approach to many studies on measles transmission, it incorporates an 

analysis of vaccination impact by including critical factors such as full and partial vaccine efficacy, as well as 

waning immunity over time. Our research focuses on identifying the conditions that lead to the occurrence of 

Local bifurcations and Hopf bifurcations around certain equilibrium points of the proposed model. 

Model description and formulation: 

    In this part, the model description is represented by a set of deterministic differential equations that illustrate 

the dynamics of infection transmission within the population concerning time (𝑡). According to these equations, 

the population is divided into four categories: 

Susceptible individuals 𝑆(𝑡) those who are at risk of infection but have not yet contracted it, Vaccinated 

individuals 𝑉(𝑡) those who have received the vaccine against the disease, Infected individuals 𝐼(𝑡) those who 

have contracted the infection and can transmit it to others, Recovered individuals 𝑅(𝑡) those who have been 

infected and have recovered from the disease. 

The total population of these four categories is given by 𝑁(𝑡), which is the sum of the individuals in all categories. 
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The susceptible category 𝑆(𝑡) increases due to births at rate 𝜋, where a portion of newborns are unvaccinated. 

The decrease in this category is due to infection at rate  
𝛽𝑆𝐼

𝑁
, vaccination at rate 𝛼𝑆, and natural death at rate 𝜇𝑆. 

Additionally, the category increases again due to waning vaccine efficacy over time at rate 𝜔𝑉.  

The number of individuals in the vaccinated category 𝑉(𝑡) increases due to vaccination of the susceptible category 

at rate 𝛼𝑆, individuals in this category can still be infected, but at a reduced rate 
𝛽𝑉𝐼(1−𝜀)

𝑁
 due to vaccine efficacy. 

The decrease in this category is due to natural death at rate 𝜇𝑉 and waning immunity over time at rate 𝜔𝑉. 

As for the infected category 𝐼(𝑡), the increase occurs either due to births or infection transmission from the 

susceptible category at rate 
𝛽𝑆𝐼

𝑁
. Vaccinated individuals can also become infected but at a reduced rate 

𝛽𝑉𝐼(1−𝜀)

𝑁
. 

The decrease in the infected category is due to recovery at rate 𝛿𝐼, natural death 𝜇𝐼, and disease-induced death at 

rate 𝜇𝐼𝐼. 

Finally, the last category, recovered individuals 𝑅(𝑡), increases due to the recovery of infected individuals at rate 

𝛿𝐼, and decreases solely due to natural death at rate 𝜇𝑅. Therefore, the dynamics of the aforementioned set of 

differential equations describing the system can be mathematically represented as follows: 

𝑑𝑆

𝑑𝑡
= 𝜋 −

𝛽𝑆𝐼

𝑁
− (𝜇 + 𝛼)𝑆 + 𝜔𝑉,          

𝑑𝑉

𝑑𝑡
= 𝛼𝑆 −

𝛽𝑉𝐼(1−𝜀)

𝑁
− 𝜇𝑉 − 𝜔𝑉,          

𝑑𝐼

𝑑𝑡
=

𝛽𝑆𝐼

𝑁
+

𝛽𝑉𝐼(1−𝜀)

𝑁
− (𝛿𝐼 + 𝜇 + 𝜇𝐼)𝐼,

𝑑𝑅

𝑑𝑡
= 𝛿𝐼 − 𝜇𝑅.                                          }

  
 

  
 

                                           (1) 

The variables and parameters of the model are summarized in the following table. 

Table 1. Variables and Parameters for Measles Dynamics 

Variables and 

Parameters 
Definition 

𝑺 Susceptible individuals. 

𝑽 Vaccinated individuals. 

𝑰 Infected individuals. 

𝑹 Recovered individuals. 

𝑵 Total population. 

𝝅 The birth rate 

𝜷 The transmission rate of infection from susceptible individuals to infected individuals. 

𝝁 The natural death rate. 

𝝁𝑰 The mortality rate due to the disease. 

𝜶 The vaccination rate (the percentage of susceptible individuals who are vaccinated). 

𝜹 The recovery rate from the disease. 

𝜺 Vaccine efficacy: 𝟎 ≤  𝜺 ≤  𝟏 (the percentage of protection provided by the vaccine). 

𝝎 
The rate of loss of immunity among vaccinated individuals (the return of vaccinated 

individuals to the susceptible category). 
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Accordingly, the progression of the disease described in system (1) is represented through the flow diagram 

provided in Figure 1. 

 
Figure 1. Flow diagram of system (1). 

The Invariant Region  

    The SVIR model is widely used to describe measles transmission dynamics in human populations; it is natural 

to consider that all parameters and variables remain non-negative for 𝑡 ≥ 0. In what follows, we show that the 

model preserves the non-negativity of all model variables, provided that the initial conditions are non-negative.  

Theorem 1. The feasible region (solution) of the measles model is defined as: 

Ω = {(S, V, I, R) ∈ 𝐑+
4 : S(t) + V(t) + I(t) + R(t) = N(t) ≤

𝜋

𝜇
}                                (2) 

 It is positively invariant and attracting. 

Proof: considering the total population as N(t) = S(t) + V(t) + I(t) + R(t), and under the assumption of non-

negative initial conditions (S(0), V(0), I(0), R(0)), the sum of the system equations gives the evolution of the 

total population over time, i.e. 

𝑑𝑁

𝑑𝑡
=
𝑑𝑆

𝑑𝑡
+
𝑑𝑉

𝑑𝑡
+
𝑑𝐼

𝑑𝑡
+
𝑑𝑅

𝑑𝑡
 

That is 

𝑑𝑁

𝑑𝑡
= 𝜋 − 𝜇𝑁 

Solving the first-order linear differential equation: 

𝑑𝑁

𝑑𝑡
+ 𝜇𝑁 = 𝜋 

Which has the solution  

𝑁(𝑡) = 𝑁(0)𝑒−𝜇𝑡 +
𝜋

𝜇
(1 − 𝑒−𝜇𝑡) 

𝑁(𝑡) ≤
𝜋

𝜇
 

The relation 𝑁(𝑡) ≤
𝜋

𝜇
  remains satisfied provided that 𝑁(0) ≤

𝜋

𝜇
  holds, which makes the region Ω a positively 

invariant set for the system trajectories. If 𝑁(0) exceeds this threshold, i.e., 𝑁(0) >
𝜋

𝜇
 , then one of two scenarios 

will occur: either the solution reaches region Ω within a finite time, or the total population tends toward the value 
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𝜋

𝜇
 while the infected compartments shrink to zero. It follows that region Ω possesses an attracting property, 

ensuring that all solutions emanating from domain 𝐑+
4  will eventually settle within this region Ω. Accordingly, 

the analysis of the dynamic measles patient model can be confined to the domain Ω, which both mathematically 

and epidemiologically is properly and rigorously formulated, thus guaranteeing its practical validity. Therefore, 

Ω is positively invariant and all attract solutions in 𝐑+
4 . 

Positivity of the solution of the system (1) 

Theorem 2. The solution set {S(t), V(t), I(t), R(t)} of the system (1) with positive initial values in Ω. remains 

positive in Ω for all time 𝑡 > 0. 

Proof: The following can be obtained from the first equation of the system (1): 

𝑑𝑆

𝑑𝑡
= 𝜋 −

𝛽𝑆𝐼

𝑁
− (𝜇 + 𝛼)𝑆 + 𝜔𝑉 

We can obtain that 

𝑑𝑆

𝑑𝑡
≥ −(

𝛽𝐼

𝑁
+ 𝜇 + 𝛼) 𝑆 

By separation of variables, 𝑆 ≠ 0 

𝑑𝑆

𝑆(𝑡)
≥ −(

𝛽𝐼

𝑁
+ 𝜇 + 𝛼)𝑑𝑡 

Which gives 

𝑆(𝑡) ≥ 𝑆(0)𝑒
−(
𝛽𝐼
𝑁
+𝜇+𝛼)𝑡

≥ 0 

Then, 

𝑆(𝑡) ≥ 0 for all 𝑡 ≥ 0. 

The remaining variables can be determined by following the same steps, which confirms that all variables have 

positive values. 

Existence of equilibrium points of the system (1) 

    The existence of all potential equilibrium points in the system (1) is studied in this part. Since the recovered 

class 𝑅 depends only on the infected class I, the fourth equation of system (1) can be explicitly solved for R once 

the value of 𝐼 is known. The R value asymptotically goes to zero if 𝐼 =  0; conversely, R tends toward the 

following value if 𝐼 =  𝐼𝑐 , where 𝐼𝑐  is a constant greater than zero: 

𝑅 =(3
𝛿𝐼𝐶

𝜇
                                               (3) 

Accordingly, the  equations listed below are the first three equations of system (1) that will  be the focus of the 

analysis. Once these equations are examined, thus, equation (3) can help to determine the value of R. 

𝑑𝑆

𝑑𝑡
= 𝜋 −

𝛽𝑆𝐼

𝑁
− (𝜇 + 𝛼)𝑆 + 𝜔𝑉        

𝑑𝑉

𝑑𝑡
= 𝛼𝑆 −

𝛽𝑉𝐼(1−𝜀)

𝑁
− 𝜇𝑉 − 𝜔𝑉        

 
𝑑𝐼

𝑑𝑡
=

𝛽𝑆𝐼

𝑁
+

𝛽𝑉𝐼(1−𝜀)

𝑁
− (𝛿 + 𝜇 + 𝜇𝐼)𝐼

  

}
 
 

 
 

                                (4) 

 
There is an equilibrium point in system (4) known as the disease-free  equilibrium point (DFE) when  𝐼 =  0, which 

is represented by 𝐸0 = (𝑆0, 𝑉0, 0) where: 

𝑆0 =
𝜋(𝜇+𝜔)

𝜇(𝜇+𝛼)+𝜔𝜇

𝑉0 =
𝛼𝜋

𝜇(𝜇+𝛼)+𝜔𝜇

}                                 (5) 

 
Conversely, 𝐸∗ = (𝑆∗, 𝑉∗, 𝐼∗) represents the endemic equilibrium point (EE) of system (4) if 𝐼 ≠  0,  where 𝑆∗,𝑉∗, 
and 𝐼∗ are identified as the positive solutions to the following equations: 
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𝜋 −
𝛽𝑆𝐼

𝑁
− (𝜇 + 𝛼)𝑆 + 𝜔𝑉 = 0  

𝛼𝑆 −
𝛽𝑉𝐼(1−𝜀)

𝑁
− 𝜇𝑉 − 𝜔𝑉 = 0                                 (6) 

𝛽𝑆𝐼

𝑁
+

𝛽𝑉𝐼(1−𝜀)

𝑁
− (𝛿 + 𝜇 + 𝜇𝐼)𝐼 = 0  

 

Solving these equations analytically gives 

 

𝑆∗ =
𝜋[𝛽𝐼(1−𝜀)+(𝜇+𝜔)𝑁]

𝛽2𝐼∗2(1−𝜀)+𝛽𝐼∗𝑁[(𝜇+𝜔)+(1−𝜀)[𝜇+𝛼]]+𝜇𝑁2(𝜇+𝛼+𝜔)
 

𝑉∗ =
𝛼𝜋𝑁2

𝛽2𝐼∗2(1−𝜀)+𝛽𝐼∗𝑁[(𝜇+𝜔)+(1−𝜀)[𝜇+𝛼]]+𝜇𝑁2(𝜇+𝛼+𝜔)

}                               (7) 

 

Substituting the expressions given in (7) into system (6) yields a cubic polynomial equation in terms of the 

endemic infected population 𝐼∗, given by: 

 

𝐼∗ = 𝐷1𝐼
3 + 𝐷2𝐼

2 + 𝐷3𝐼                                 (8) 

 

Equation (8) is a third-degree polynomial in 𝐼∗, where the coefficients 𝐷1 , 𝐷2 and 𝐷3 depend on the model 

parameters as defined below:     

 

                                  𝐷1 = −𝑁𝛽
2(1 − 𝜀)(𝛿 + 𝜇 + 𝜇𝐼) < 0 

                                  𝐷2 = (𝑁𝛽(𝛽𝜋(1 − 𝜀) − 𝑁(𝛿 + 𝜇 + 𝜇𝐼)[(𝜇 + 𝜔) + (1 − 𝜀)(𝜇 + 𝛼)])) 

                                  𝐷3 = 𝑁
2 (𝛽(𝜋(𝜇 + 𝜔) + 𝛼𝜋(1 − 𝜀)) − 𝑁𝜇(𝜇 + 𝜔 + 𝛼)(𝛿 + 𝜇 + 𝜇𝐼)) 

 

The presence of a unique positive solution 𝐼∗ to equation (8) can be established via Descartes rule of signs, 

provided that at least one of the following conditions holds.   

 

𝛽𝜋(1 − 𝜀) < 𝑁(𝛿 + 𝜇 + 𝜇𝐼)[(𝜇 + 𝜔) + (1 − 𝜀)(𝜇 + 𝛼)]                                 (9.a) 

 

𝛽(𝜋(𝜇 + 𝜔) + 𝛼𝜋(1 − 𝜀)) > 𝑁𝜇(𝜇 + 𝜔 + 𝛼)(𝛿 + 𝜇 + 𝜇𝐼)                               (9.b) 

 

Local stability analysis 

     In this part, system (4) is analyzed for local stability at E0 and E∗,  as established in the theorems that follow. 

Theorem 3. For system  (4), the disease-free equilibrium point E0 = (S0, V0, 0)  is locally asymptotically stable 

provided that the condition below is satisfied: 

𝛽(S0+V0(1−𝜀))

𝑁(𝛿+𝜇+𝜇𝐼)
< 1                               (10.a) 

and qualifies as a saddle-point if: 

𝛽(𝑆0+𝑉0(1−𝜀))

𝑁(𝛿+𝜇+𝜇𝐼)
> 1                               (10.b) 

Proof: The Jacobian matrix corresponding to system (4) is given by: 

𝐽 =

[
 
 
 
 
 −
𝛽𝐼

𝑁
− (𝜇 + 𝛼) 𝜔 −

𝛽𝑆

𝑁

𝛼 −
𝛽𝐼(1 − 𝜀)

𝑁
− (𝜇 + 𝜔) −

𝛽𝑉(1 − 𝜀)

𝑁
𝛽𝐼

𝑁

𝛽𝐼(1 − 𝜀)

𝑁

𝛽(𝑆 + 𝑉(1 − 𝜀))

𝑁
− (𝛿 + 𝜇 + 𝜇𝐼)]

 
 
 
 
 

 

and hence  
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𝐽(E0) =

[
 
 
 
 
 
 −(𝜇 + 𝛼) 𝜔 −

𝛽𝑆0

𝑁

𝛼 −(𝜇 + 𝜔) −
𝛽𝑉0(1 − 𝜀)

𝑁

0 0
𝛽(𝑆0 + 𝑉0(1 − 𝜀))

𝑁
− (𝛿 + 𝜇 + 𝜇𝐼)]

 
 
 
 
 
 

 

|𝐽(E0) − 𝜆| =

|

|
−(𝜇 + 𝛼) − 𝜆 𝜔 −

𝛽𝑆0

𝑁

𝛼 −(𝜇 + 𝜔) − 𝜆 −
𝛽𝑉0(1 − 𝜀)

𝑁

0 0
𝛽(𝑆0 + 𝑉0(1 − 𝜀))

𝑁
− (𝛿 + 𝜇 + 𝜇𝐼) − 𝜆

|

|

= 0 

(
𝛽(𝑆0 + 𝑉0(1 − 𝜀))

𝑁
− (𝛿 + 𝜇 + 𝜇𝐼) − 𝜆) |

−(𝜇 + 𝛼) − 𝜆 𝜔

𝛼 −(𝜇 + 𝜔) − 𝜆
| = 0 

 The Jacobian matrix 𝐽(E0) has the following characteristic equation: 

(
𝛽(𝑆0+𝑉0(1−𝜀))

𝑁
− (𝛿 + 𝜇 + 𝜇𝐼) − 𝜆) [𝜆

2 + 𝐴𝜆 + 𝐵] = 0                               (11) 

where: 

         𝐴 = [(𝜇 + 𝛼) + (𝜇 + 𝜔)] > 0

𝐵 = [𝜇(𝜇 + 𝜔 + 𝛼)] > 0
}                                                      (12.a) 

Consequently, equation (9) has the following roots (eigenvalues) of 𝐽(E0): 

 𝜆𝑆,𝑉 =
−𝐴

2
±

(𝛼+𝜔)

2
< 0                                                                         (12.b) 

𝜆𝐼 = (
𝛽(𝑆0+𝑉0(1−𝜀))

𝑁
− (𝛿 + 𝜇 + 𝜇𝐼))                                                        (12.c) 

where  the eigenvalues 𝜆𝑆, 𝜆𝑉 , and 𝜆𝐼  represent the system dynamics behavior in the direction of the variables S, 

V, and I, respectively.  

Both 𝜆𝑆 and 𝜆𝑉 are not positive. In contrast, 𝜆𝐼 , the third eigenvalue, may be negative or positive depending on 

whether conditions (10.a) and (10.b) are satisfied, respectively. 

As a result, E0 remains asymptotically stable when condition (10.a) is satisfied, but it becomes a saddle point if 

condition (10.b) is satisfied; therefore, the proof is finished. 

Theorem 4. For system (4), local asymptotic stability is ensured if the endemic equilibrium point 𝐸∗ =
(𝑆∗, 𝑉∗,  𝐼∗) exists and the following conditions hold: 

𝛽(𝑆0+𝑉0(1−𝜀))

𝑁
< (𝛿 + 𝜇 + 𝜇𝐼)                                                               (13.a) 

and                     

𝛽[𝑆∗(2𝜔 + 3𝛼(1 − 𝜀)) + V∗(𝜀 − 1)(3𝜔 + 2𝛼(1 − 𝜀))] < 2(𝜔 + 𝛼(1 − 𝜀))(𝛿 + 𝜇 + 𝜇𝐼)                        (13.b) 

Proof: By computing the Jacobian matrix of system (4) at the 𝐸∗: 
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𝐽(𝐸∗ ) =

[
 
 
 
 
 −
𝛽𝐼∗

𝑁
− (𝜇 + 𝛼) 𝜔 −

𝛽𝑆∗

𝑁

𝛼 −
β𝐼∗(1 − 𝜀)

𝑁
− (𝜇 + 𝜔)

−βV∗(1 − 𝜀)

𝑁
𝛽𝐼∗

𝑁

β𝐼∗(1 − 𝜀)

𝑁

𝛽(𝑆∗ + 𝑉∗(1 − 𝜀))

𝑁
− (𝛿 + 𝜇 + 𝜇𝐼)]

 
 
 
 
 

 

Therefore, this is the characteristic equation for system (4) at the endemic equilibrium: 

𝜆3 + 𝐴1𝜆
2 + 𝐴2𝜆 + 𝐴3 = 0 

Here: 

𝐴1 = −[𝑎11 + 𝑎22 + 𝑎33]. 

𝐴2 = 𝑎11𝑎22 − 𝑎12𝑎21 + 𝑎11𝑎33 − 𝑎13𝑎31 + 𝑎22𝑎33 − 𝑎23𝑎32. 

𝐴3 = −[𝑎11𝑎22𝑎33 + 𝑎12𝑎23𝑎31 + 𝑎13𝑎21𝑎32 − 𝑎13𝑎22𝑎31 − 𝑎11𝑎23𝑎32 − 𝑎12𝑎21𝑎33].  

      = −[𝑎33(𝑎11𝑎22 − 𝑎12𝑎21) + 𝑎12𝑎23𝑎31 + 𝑎13𝑎21𝑎32 − 𝑎13𝑎22𝑎31 − 𝑎11𝑎23𝑎32]. 

Further: 

∆ = 𝐴1𝐴2 − 𝐴3 

    = −(𝑎11 + 𝑎22)(𝑎11𝑎22 − 𝑎12𝑎21) 

                      −(𝑎11 + 𝑎33)(𝑎11𝑎33 − 𝑎13𝑎31) 

                                  −(𝑎22 + 𝑎33)(𝑎22𝑎33 − 𝑎23𝑎32) 

                                               −2𝑎11𝑎22𝑎33 + 𝑎12𝑎23𝑎31 + 𝑎13𝑎21𝑎32 

Due to the Routh-Hurwitz criterion, if 𝐴1 > 0, 𝐴3 > 0, and ∆ = 𝐴1𝐴2 − 𝐴3 > 0, then the endemic equilibrium 

point 𝐸∗ will be locally asymptotically stable. 

 It is obvious that if condition (13.a) is true,  𝐴1 > 0 and 𝐴3 > 0. Provided that conditions (13) (a-b) are satisfied. 

Then ∆ = 𝐴1𝐴2 − 𝐴3 > 0. This completes the proof. 

The local bifurcation analysis of the system (4) 

    This part investigates the presence of local bifurcations, namely, saddle-node, transcritical, and pitchfork types 

for system (4) around the equilibrium point, using the Sotomayor criterion  [25]. The Jacobian matrix at (𝐸0, 𝛿0) 
for system (4) can be expressed as follows: 

𝐽 = 𝐷𝑓(𝐸0, 𝛿0) 

where: 

𝛿0 =
𝛽(𝑆0+𝑉0(1−𝜀))

𝑁
− (𝜇 + 𝜇𝐼)                               (14) 

𝐽 = 𝐷𝑓(𝐸0, 𝛿0) =

[
 
 
 
 −(𝜇 + 𝛼) 𝜔 −

𝛽𝑆0

𝑁

𝛼 −(𝜇 + 𝜔) −
𝛽𝑉0(1 − 𝜀)

𝑁
0 0 0 ]

 
 
 
 

 

The third eigenvalue 𝜆𝐼, is equal to zero (𝜆𝐼 = 0), but 𝜆𝑆 and 𝜆𝑉, as provided in equation (12.b), are negative. 

Furthermore, 𝐾 = (𝑘1, 𝑘2, 𝑘3)
𝑇 is the eigenvector that corresponds to 𝜆𝐼 satisfying the next condition: 
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𝐽𝐾 = 𝜆𝐾  then  𝐽𝐾 = 0 

Therefore  

[
 
 
 
 −(𝜇 + 𝛼) 𝜔 −

𝛽𝑆0

𝑁

𝛼 −(𝜇 + 𝜔) −
𝛽𝑉0(1 − 𝜀)

𝑁
0 0 0 ]

 
 
 
 

. [

𝑘1
𝑘2
𝑘3

] = 0 

From this, we get that: 

−(𝜇 + 𝛼)𝑘1 + 𝜔𝑘2 −
𝛽𝑆0

𝑁
 𝑘3 = 0                                                          (15.a) 

𝛼𝑘1 − (𝜇 + 𝜔)𝑘2 −
𝛽𝑉0(1−𝜀)

𝑁
𝑘3 = 0                                                        (15.b) 

Solving the aforementioned system of equations gives: 

𝑘1 = ℎ𝑘3 ; 𝑘2 = 𝑔𝑘3 

where 

ℎ =
−𝛽[𝑉0𝜔(1 − 𝜀)(𝜇 + 𝛼)2 + (𝑆0(𝜇3 + 𝜇2(𝜔 + 2𝛼) + 𝛼𝜔(2𝜇 + 𝛼) + 𝛼2𝜇))]

𝑁[𝜇(𝜇 + 𝜔 + 𝛼)]
, 

and 

𝑔 =
𝛽[𝛼𝑆0 + 𝑉0(1 − 𝜀)(𝜇 + 𝛼)]

𝑁[𝜇(𝜇 + 𝜔 + 𝛼)]
. 

Here 𝑘3 can be any real value that is not zero. 

Therefore 

𝐾 = [

ℎ𝑘1
𝑔𝑘2
𝑘3

] 

Furthermore, the eigenvector 𝑊 = (𝑤1, 𝑤2, 𝑤3)
𝑇 corresponding to 𝜆𝐼 of 𝐽𝑇 can be written as: 

[
 
 
 
−(𝜇 + 𝛼) 𝛼 0

𝜔 −(𝜇 + 𝜔) 0

−
𝛽𝑆0

𝑁
−
𝛽𝑉0(1 − 𝜀)

𝑁
0]
 
 
 

. [

𝑤1
𝑤2
𝑤3
] = 0 

Hence, we have: 

𝑤 = [
0
0
𝑤3

] 

Let 𝑤3 be any nonzero real number. System (4) is then expressed in the vector form as follows: 

𝑑𝑋

𝑑𝑡
= 𝑓(𝑥) 

where 𝑋 =  (𝑆, 𝑉, 𝐼 ) 𝑇and 𝑓 = (𝑓1, 𝑓2, 𝑓3)  with 𝑓𝑖, 𝑖 = 1,2,3 as presented in system (4), thus, by determining  

 
𝑑𝑓

𝑑𝛿
= 𝑓𝛿 , we obtain that: 
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𝑓𝛿 = [
0 0 0
0 0 0
0 0 −𝐼

] = [
0
0
−𝐼
] 

Then  

𝑓𝛿(𝐸
0, 𝛿0) = [

0
0
0
] 

Therefore 

𝑊𝑇 . 𝑓𝛿(𝐸
0, 𝛿0) = 0 

Thus, based on the Sotomayor theorem, at 𝛿0 the system does not exhibit a Saddle-node bifurcation around 𝐸0. 

To analyze the possible emergence of different  types of bifurcation, the Jacobian matrix 𝐷𝑓𝛿  is evaluated at the 

disease-free equilibrium point (𝐸0, 𝛿0), with respect to the state variables in vector 𝑋. 

𝐷𝑓𝛿(𝐸
0, 𝛿0) = [

0 0 0
0 0 0
0 0 −1

] 

so 

𝑊𝑇 . [𝐷𝑓𝛿(𝐸
0, 𝛿0). 𝐾] = −𝑘3𝑤3 ≠ 0 

Furthermore, based on Sotomayor's theorem, given that the following results are true, in addition to what has been 

previously established 

𝑊𝑇 . [𝐷2𝑓(𝐸0, 𝛿0). (𝐾, 𝑘)] ≠ 0 

In this case, 𝐷𝑓(𝐸0, 𝛿0) represents the Jacobian matrix evaluated at 𝐸0 and 𝛿0, as a result, system (4) exhibits a 

transcritical bifurcation, but a pitch-fork bifurcation is unlikely. given that it is known as: 

[𝐷2𝑓(𝐸0, 𝛿0). (𝐾, 𝑘)] =

[
 
 
 
 
 

−2𝛽ℎ

𝑁
𝑘3
2

−2𝛽𝑔(1 − 𝜀)

𝑁
𝑘3
2

2𝛽(ℎ + 𝑔(1 − 𝜀))

𝑁
𝑘3
2
]
 
 
 
 
 

 

Therefore 

𝑊𝑇 . [𝐷2𝑓(𝐸0, 𝛿0). (𝐾, 𝑘)] =
2𝛽(ℎ + 𝑔(1 − 𝜀))

𝑁
𝑘3
2 ≠ 0 

Hence, whenever the parameter 𝛿 crosses through the bifurcation value 𝛿0, system (4) exhibits a transcritical 

bifurcation in the neighborhood of 𝐸0. 

The Hopf-bifurcation analysis of system (4) 

     A Hopf-bifurcation occurring close to the endemic equilibrium point is investigated in this section. 

𝐴𝑖 , 𝑖 = 1,2,3, are positive if condition (13.a) has been satisfied, according to the coefficients of the characteristic 

equation determined by a local stability analysis of system (4) around 𝐸∗. On the other hand, ∆= 𝐴1𝐴2 − 𝐴3 is 

positive if condition (13.b) has been satisfied, and therefore, according to the theorem of Hopf-bifurcation  [27], 

a Hopf-bifurcation does not occur in this case. The absence of a Hopf bifurcation in this model carries significant 

epidemiological implications. It indicates that the measles transmission dynamics, under the studied parameters, 

do not exhibit sustained oscillations or recurrent epidemic waves. This means that once the system stabilizes—

whether in a disease-free or endemic state—it tends to remain in that state without periodic unexpected 

fluctuations. Such dynamic stability facilitates long-term control strategy planning, as disease behavior becomes 

more predictable. 
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Numerical analysis 

    The current section aims to investigate the overall dynamic behavior of the system (1) through numerical 

simulations. The temporal evolution of all epidemiological compartments, namely the susceptible 𝑆(𝑡), vaccinated 

𝑉(𝑡), infected 𝐼(𝑡), and recovered 𝑅(𝑡), is illustrated by solving the system over a finite time interval.is illustrated 

by solving the system over a finite time interval, In Figure 2, the trajectories are distinguished by color, where the 

susceptible population 𝑆(𝑡) is represented by the blue curve, the vaccinated population 𝑉(𝑡) by the green curve, 

the infected population 𝐼(𝑡) by the red curve, and the recovered population 𝑅(𝑡) by the black curve. For the 

simulations, the initial conditions were chosen as 𝑆(0) = 990, 𝑉(0) = 0, 𝐼(0) = 10, and 𝑅(0) = 0, representing 

a population with a small number of initial infections. The parameter values used in the numerical analysis are 

summarized in the following table. 

Table 2. Parameter values used in the numerical analysis 

Parameter Value Source 

𝝅 10 Assumed 

𝜷 0.3 Assumed 

𝜶 0.05 Assumed 

𝜹 0.1 [4] 

𝝁 0.01 Assumed 

𝝁𝑰 0.02 Assumed 

𝝎 0.02 [5,6] 

𝜺 [0,1] control parameter 

 

 

 
                                        (a)                                                                                             (b) 

 
                                        (c)                                                                                          (d) 

Figure 2. Time evolution of the SVIR compartments for different values of vaccine efficacy 𝜀. 

The results demonstrate that increasing vaccine efficacy significantly reduces the number of infected individuals 

over time. In particular, as 𝜀 approaches unity, the probability of infection among vaccinated individuals 

decreases, leading to a substantial decline in the infected population. 
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Results and discussion 

    The mathematical analysis conducted in this study provides important insights into the impact of vaccination 

on measles transmission dynamics. The presence of a transcritical bifurcation near the disease-free equilibrium 

indicates a critical threshold that governs the transition between disease elimination and persistence, highlighting 

the importance of maintaining high vaccination coverage and efficacy to ensure disease control. In contrast, no 

Hopf bifurcation was detected in the model, indicating the absence of sustained oscillations or recurrent epidemic 

waves at equilibrium points, which reflects the stability of the system under the current conditions. This means 

that any short-term fluctuations in infection numbers tend to dissipate quickly, making the long-term behavior of 

the disease more predictable. Furthermore, the absence of both saddle-node and pitchfork bifurcations supports 

the structural stability of the model under small perturbations. Epidemiologically, this implies that measles tends 

to stabilize either in a disease-free state or a relatively steady endemic state, unless critical parameters such as 

vaccine efficacy or coverage undergo substantial changes a consideration of particular importance given the 

phenomenon of waning immunity over time. 

Numerical simulations confirmed these analytical results, showing that increased vaccine efficacy leads to a 

significant reduction in the number of infections, while decreased vaccine efficacy due to waning immunity 

increases the size of the susceptible population even in highly vaccinated communities. When vaccine efficacy 

approaches its maximum value, the probability of infection among vaccinated individuals decreases markedly, 

underscoring the crucial role of highly effective vaccines in controlling measles transmission. 

From a public health perspective, these findings emphasize the need to design flexible vaccination policies that 

include booster programs to maintain immunity levels in the population over the long term, with a focus on 

sustaining high vaccination coverage and minimizing vaccine failure. Such measures ensure stability in disease 

dynamics and prevent potential outbreaks, even in communities experiencing gradual declines in immunity. 

Conclusion 

    In this study, a mathematical model was developed and analyzed to describe the transmission dynamics of 

measles under the influence of vaccination. The existence and local stability of equilibrium points were rigorously 

examined. Bifurcation analysis revealed the occurrence of a transcritical bifurcation in the neighborhood of the 

disease-free equilibrium, while both saddle-node and pitchfork bifurcations were found to be absent. In addition, 

the analysis showed that no Hopf bifurcation occurs in the proposed model, indicating the absence of sustained 

oscillatory behavior near the equilibrium points. Numerical simulations supported the analytical findings and 

demonstrated that increasing vaccine efficacy significantly reduces the number of infected individuals over time. 

From an epidemiological perspective, these results highlight the critical role of vaccination-related parameters in 

determining long-term disease control. 

Future work 

    Finally, future extensions of the proposed SVIR model may incorporate time delays to account for the latency 

period between infection and symptom onset, as well as the delay between vaccination and the acquisition of 

effective immunity. Such extensions could lead to richer dynamical behaviors, including possible oscillatory 

dynamics. Moreover, incorporating social and behavioral factors, such as vaccine hesitancy or heterogeneous 

contact patterns, would provide a more realistic framework for assessing measles transmission and designing 

effective control strategies. 
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