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Abstract:

This study presents a mathematical model to investigate the transmission dynamics of measles in a population
following the introduction of vaccination. The population is divided into four epidemiological compartments:
Susceptible (S), Vaccinated (V), Infected (1), and Recovered (R). A key feature of the model is the inclusion of
waning immunity induced by vaccination over time. A thorough mathematical analysis is performed to establish
the positivity and boundedness of the model solutions, along with the existence and local stability of equilibrium
points. Furthermore, the model is analyzed for the occurrence of local bifurcations, including Hopf bifurcations,
to identify potential complex dynamical behaviors. Numerical simulations are conducted to validate the analytical
findings and assess the influence of key parameters on the system dynamics.
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Introduction

Measles is a highly contagious viral disease with historical descriptions dating back to the 9th century, and the
first detailed clinical account distinguishing it from other diseases was provided by Persian physician al-Razi in
the 10th century. The causative virus was later isolated in the 20th century and the first licensed vaccine became
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available in 1963 [1]. the world experienced millions of cases and hundreds of thousands of deaths every year.
The measles vaccine is considered one of the most effective vaccines, leading to a significant decrease in cases
and deaths associated with the disease. There are two doses of the measles vaccine; the first dose should be given
at 12-15 months of age, while the second dose is usually administered at 4-6 years of age [2]. However, some
recent studies [3], [4] have indicated a potential decline in the vaccine’s effectiveness over time. These studies
revealed that two doses of the vaccine may not provide lifelong immunity as previously believed, and that
protection may diminish slightly each year. This decline in immunity could explain the increase in measles cases
despite receiving vaccinations in childhood.

Mathematical models are of great importance in analyzing and understanding the dynamics of infectious diseases
and epidemic spread, developing control policies, and formulating strategies to contain them. Interest in this field
began with the famous SIR model introduced by Kermark and Mckendrick in 1927 [5]. This model established
the first mathematical framework for studying and describing diseases transmitted through direct contact or
interaction. Since then, scientific research and studies have advanced, and researchers have expanded this basic
simple model to include various factors such as vaccination, treatment stages, immunity, and individual behavior
within the community. For instance, researchers Kribs-Zaleta and Velasco-Hernandez presented in 2000 [6] an
SIS type model incorporating the effect of development, Arino et al. [7], modified the traditional model to allow
recovered individuals to enter a temporary immunity class instead of returning directly to the susceptible class,
reflecting the nature of certain diseases that require clarification of this stage. Other studies focused on evaluating
the effectiveness and impact of vaccination in reducing diseases. For instance, the study by Kribs-Zaleta and
Martcheva [8] addressed the effect of vaccines in curbing the spread of diseases like Hepatitis (A, B). Meanwhile,
SVIR models, as in the research of Alexander et al. [9] and Shim [10], focused on the spread dynamics of influenza
in the presence of vaccines. On the other hand, studies such as d’Onoftrio et al. [11] presented models to analyze
and understand the impact of an individual’s behaviors and decisions regarding vaccination on disease spread.

Bifurcation theory is an important branch of mathematics that specializes in studying qualitative or topological
changes that occur or emerge in the structure of mathematical systems, such as the transformation of integral
curves of vector fields or solutions of various differential equations. The importance and application of this theory
lie primarily in the study and analysis of dynamical systems, where bifurcation occurs when a slight modification
or change in parameter values (bifurcation parameters) leads to a radical change in the qualitative or topological
behavior of the system, as illustrated in [12], [13], [14]. Bifurcation occurs in both continuous dynamical systems
(represented by ordinary differential equations ODEs, delay differential equations DDEs, or partial differential
equations PDEs; for example, see [15], [16], [17], [18], [19] and discrete dynamical systems (represented by maps;
see, for example, [19], [20], [21], [22], [23], [24]. The term "bifurcation" was first introduced in 1885 by Henri
Poincaré [27] in seminal mathematical research addressing this phenomenon. He named and classified different
types of fixed points and described their characteristics. Perko L. [25] established the fundamental conditions for
the occurrence of local bifurcation (such as saddle-node bifurcation, transcritical bifurcation, and pitchfork
bifurcation). As for Hopf bifurcation, the necessary condition for its occurrence was formulated by Hirsch and
Smale S. [26], while Haque M. and Venturino E. [27] explained the sufficient condition for the occurrence of this
type of bifurcation. see, for example, [28], [29], [30]. In the same context, previous research efforts include studies
by K. Qahtan Khalf et al. [31], and R. Kamel Naji and A. Ali Muhseen [32] on local bifurcation patterns and Hopf
bifurcation around equilibrium points.

This study presents an SVIR-type mathematical model describing the spread dynamics of measles in the
population. While our model uses a similar approach to many studies on measles transmission, it incorporates an
analysis of vaccination impact by including critical factors such as full and partial vaccine efficacy, as well as
waning immunity over time. Our research focuses on identifying the conditions that lead to the occurrence of
Local bifurcations and Hopf bifurcations around certain equilibrium points of the proposed model.

Model description and formulation:

In this part, the model description is represented by a set of deterministic differential equations that illustrate
the dynamics of infection transmission within the population concerning time (t). According to these equations,
the population is divided into four categories:

Susceptible individuals S(t) those who are at risk of infection but have not yet contracted it, Vaccinated
individuals V (t) those who have received the vaccine against the disease, Infected individuals I(t) those who
have contracted the infection and can transmit it to others, Recovered individuals R(t) those who have been
infected and have recovered from the disease.

The total population of these four categories is given by N(t), which is the sum of the individuals in all categories.
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The susceptible category S(t) increases due to births at rate 7, where a portion of newborns are unvaccinated.

The decrease in this category is due to infection at rate % vaccination at rate S, and natural death at rate uS.
Additionally, the category increases again due to waning vaccine efficacy over time at rate wV.

The number of individuals in the vaccinated category V (t) increases due to vaccination of the susceptible category
at rate aS, individuals in this category can still be infected, but at a reduced rate w due to vaccine efficacy.
The decrease in this category is due to natural death at rate 4V and waning immunity over time at rate wV'.

As for the infected category I(t), the increase occurs either due to births or infection transmission from the

susceptible category at rate %. Vaccinated individuals can also become infected but at a reduced rate w.
The decrease in the infected category is due to recovery at rate 81, natural death ul, and disease-induced death at
rate p;l.

Finally, the last category, recovered individuals R(t), increases due to the recovery of infected individuals at rate
61, and decreases solely due to natural death at rate uR. Therefore, the dynamics of the aforementioned set of
differential equations describing the system can be mathematically represented as follows:

as _ _ BSI
Pl e U+ a)S + wV,
d—V=aS—w—,uV—a)V,
dt N

%=% w—(&"‘ﬂ"‘lh)]' @
& = 61— uR. ]
The variables and parameters of the model are summarized in the following table.
Table 1. Variables and Parameters for Measles Dynamics
Variables and Definition
Parameters
S Susceptible individuals.
|4 Vaccinated individuals.
I Infected individuals.
R Recovered individuals.
N Total population.
74 The birth rate
B The transmission rate of infection from susceptible individuals to infected individuals.
n The natural death rate.
U The mortality rate due to the disease.
a The vaccination rate (the percentage of susceptible individuals who are vaccinated).
6 The recovery rate from the disease.
£ Vaccine efficacy: 0 < & < 1 (the percentage of protection provided by the vaccine).
o The rate of loss of imn_wun_ity among vaccinated _individuals (the return of vaccinated
individuals to the susceptible category).
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Accordingly, the progression of the disease described in system (1) is represented through the flow diagram
provided in Figure 1.

()
BVI(1-g)
s — N - - 5[ ————————
T—> S Vv %»‘ I }—-‘ R ‘
m"u." L " Y, A
s uv uR
BSI
N

Figure 1. Flow diagram of system (1).

The Invariant Region

The SVIR model is widely used to describe measles transmission dynamics in human populations; it is natural
to consider that all parameters and variables remain non-negative for t > 0. In what follows, we show that the

model preserves the non-negativity of all model variables, provided that the initial conditions are non-negative.
Theorem 1. The feasible region (solution) of the measles model is defined as:

Q={(S,V,I,R) € RL:S(t) + V(t) + I(t) + R(t) = N(t) < g} (2)

It is positively invariant and attracting.

Proof: considering the total population as N(t) = S(t) + V(t) + I(t) + R(t), and under the assumption of non-
negative initial conditions (S(0), V(0),1(0),R(0)), the sum of the system equations gives the evolution of the
total population over time, i.e.

dN _dS dv  dI dR
dt dt dt dt dt

That is
dN N
ac " H
Solving the first-order linear differential equation:
dN
—+uN=m

dt
Which has the solution

N(t) = N(0)e "t + % (1 — e Ht)
Vs
N(t) <—
U

The relation N(t) < E remains satisfied provided that N(0) < g holds, which makes the region Q a positively

invariant set for the system trajectories. If N(0) exceeds this threshold, i.e., N(0) > %,then one of two scenarios

will occur: either the solution reaches region Q within a finite time, or the total population tends toward the value
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g while the infected compartments shrink to zero. It follows that region  possesses an attracting property,

ensuring that all solutions emanating from domain R% will eventually settle within this region Q. Accordingly,
the analysis of the dynamic measles patient model can be confined to the domain Q, which both mathematically
and epidemiologically is properly and rigorously formulated, thus guaranteeing its practical validity. Therefore,
Q is positively invariant and all attract solutions in R%.

Positivity of the solution of the system (1)

Theorem 2. The solution set {S(t), V(t), I(t), R(t)} of the system (1) with positive initial values in Q. remains
positive in Q for all time t > 0.

Proof: The following can be obtained from the first equation of the system (1):

e
dac TN T WTabTe

We can obtain that
as > (BI +u+ )S
e~ \yTHTE
By separation of variables, S # 0
as > (ﬁ ! +u+ )dt
so- \NTHTE
Which gives

S() = S(O)e‘(%”‘*“)t >0

Then,
S(t)=0forallt > 0.

The remaining variables can be determined by following the same steps, which confirms that all variables have
positive values.

Existence of equilibrium points of the system (1)

The existence of all potential equilibrium points in the system (1) is studied in this part. Since the recovered
class R depends only on the infected class I, the fourth equation of system (1) can be explicitly solved for R once
the value of I is known. The R value asymptotically goes to zero if I = 0; conversely, R tends toward the
following value if I = I, where I is a constant greater than zero:

Sic
R =(3%¢ 3)

Accordingly, the equations listed below are the first three equations of system (1) that will be the focus of the
analysis. Once these equations are examined, thus, equation (3) can help to determine the value of R.

a _  _BSt _

i " U+ a)sS+wV

d_V _ _ BVI(1—-¢) _ _

eSS —wV 4)
ﬂ _ @ BVI(1—-¢) _

Ty T @rut+ul

There is an equilibrium point in system (4) known as the disease-free equilibrium point (DFE) when I = 0, which
is represented by E° = (5°,V°,0) where:

S0 — n(pt+w)
+a)+
. up ;2 wp (5)
T ppta)top

Conversely, E* = (S§*, V", I") represents the endemic equilibrium point (EE) of system (4) if I # 0, where $*,V*,
and ™ are identified as the positive solutions to the following equations:

79 | Journal of Insights in Basic and Applied Sciences



n—%—(u+a)s+wvzo

as - B2 _yy —wy =0 (6)

Bs1 | pvi(i-g) _
Tt @ +u+u)l=0

Solving these equations analytically gives

_ n[BI(1-€)+(u+w)N]
T B2I2(1—)+BI*N[(u+w)+(1—&) [ut+a] ] +uN2 (u+a+w)

wnn? ™

- B21*2(1—&)+BI*N[(p+w)+(1—&)[u+a]]+uN2 (uta+w)

S*

V*
Substituting the expressions given in (7) into system (6) yields a cubic polynomial equation in terms of the
endemic infected population I*, given by:
I*=D113+D212+D3I (8)

Equation (8) is a third-degree polynomial in I*, where the coefficients D,, D, and D; depend on the model
parameters as defined below:

Dy =-Np*(1-e)(§+p+p) <0
D, =(NBBr(1—e) =N +p+p)[n+w)+ (1 -+ a)])
Dy = N? (B(n(u tw)t+an(l—¢)—Nu(p+w+a)(§+pu+ u,))

The presence of a unique positive solution I* to equation (8) can be established via Descartes rule of signs,
provided that at least one of the following conditions holds.

pr(1—e) < N@E+p+p)lu+w)+ (1 -+ a) (9.2)
,8(71(/1 +w)+an(l - e)) >Nu(u+w+a)(6+u+p) (9.b)

Local stability analysis

In this part, system (4) is analyzed for local stability at E® and E*, as established in the theorems that follow.

Theorem 3. For system (4), the disease-free equilibrium point E® = (S, V°,0) is locally asymptotically stable
provided that the condition below is satisfied:

B(SP+VO(1-¢))

N(8+p+pp) (10.2)
and qualifies as a saddle-point if:
B(S°+V0(1-¢)
N(S+p+up) (10.b)
Proof: The Jacobian matrix corresponding to system (4) is given by:
Bl BS
N (u+a) w N
_ pI(1 —¢) V(1 —¢)
/= Ty Wt TN
BI BI(1 —¢€) BES+V(1—-¢)
i — G tutu)

and hence
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B

—(u+a) w N
V@1 —
JEY=| @  —+w —%
B(S°+V°(1—¢)
0 0 N - +p+u)
BS°
_(,ll + (Z) -1 w — T
Ve —
JE®) -4 = a —-(u+w)—4 —w =0
SO+vo(1 -
0 0 AC N( 8))—((5+u+u,)—/1
B(S°+V°(1—¢)) —(u+a)—2 w _
The Jacobian matrix J(E®) has the following characteristic equation:
(B0 (54t ) = A) (22 + AL+ B] = 0 (11)
where:
A=[(p+a)+ (p+w)] >0}
B=[up+w+a)]>0 (12.2)
Consequently, equation (9) has the following roots (eigenvalues) of J(E°):
Aoy =2+ < g (12.b)
2 = (3(50+t:’(1—s)) — S +ut M1)) (12.c)

where the eigenvalues A, 4y, and A; represent the system dynamics behavior in the direction of the variables S,
V, and I, respectively.

Both A5 and A, are not positive. In contrast, 4;, the third eigenvalue, may be negative or positive depending on
whether conditions (10.a) and (10.b) are satisfied, respectively.

As a result, E® remains asymptotically stable when condition (10.a) is satisfied, but it becomes a saddle point if
condition (10.b) is satisfied; therefore, the proof is finished.

Theorem 4. For system (4), local asymptotic stability is ensured if the endemic equilibrium point E* =
(§*,V*, I") exists and the following conditions hold:

B(SO+vO(1-¢))

" <6 +p+u) (13.9)

and
BIS* (2w +3a(1— &)+ V' (e - D(Bw+2a(l—¢))] <2(w+a(l—)( +u+u) (13.b)

Proof: By computing the Jacobian matrix of system (4) at the E*:
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I _Bs”

_W_(#-HX) w N
1) = BA9 BV -0
Bl BI'(1—e) B +V*(1-¢)
= P - ~ O+ utu)

Therefore, this is the characteristic equation for system (4) at the endemic equilibrium:
B+A22+A,1+4;=0

Here:
Ay = —[ay; + az; + ass).
Ay = 411035 — Q12031 + Q11033 — A13031 + Q22033 — Ap303;.
Az = —[a11a52033 + 012053031 + A13051a3; — A13052a31 — A110,3037 — 12051433]-

= —[as3(a11az2 — a12051) + A12053a31 + A13G21A3; — 13027031 — A11A5303;].
Further:
A=A A, — Ay

= —(a11 + a32)(a11a22 — a12051)
—(ay1 + as3)(ai1a33 — as3a;1)
—(az; + as3)(az;a33 — azsas;)
—204105,033 + 012053031 + A130,1A3;

Due to the Routh-Hurwitz criterion, if A; > 0,45 > 0, and A = A;A, — A; > 0, then the endemic equilibrium
point E* will be locally asymptotically stable.

It is obvious that if condition (13.a) is true, A; > 0 and A; > 0. Provided that conditions (13) (a-b) are satisfied.
Then A = A;A, — A; > 0. This completes the proof.

The local bifurcation analysis of the system (4)

This part investigates the presence of local bifurcations, namely, saddle-node, transcritical, and pitchfork types
for system (4) around the equilibrium point, using the Sotomayor criterion [25]. The Jacobian matrix at (E°, §,)
for system (4) can be expressed as follows:

J = Df(E®, &)
where:

8 = D iy (14

SO

—(u+a) w - ﬂT
= Df(E% 6,) = 0(1 —

J = Df(E®, 8) R 14 (N &)
0 0 0

The third eigenvalue 4,, is equal to zero (4, = 0), but Ag and A, as provided in equation (12.b), are negative.
Furthermore, K = (kq, k,, k3)7 is the eigenvector that corresponds to A, satisfying the next condition:
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JK =K then JK =0

Therefore
BS°
—([.l + a) w - T kl
BVO(1—¢)|-|k2| =0
«  ~@re) ———— li,
0 0 0
From this, we get that:
0
—(u+ @)y + wky =Bk =0 (15.a)
aky — (u+ )k, =2 g, = (15.b)

Solving the aforementioned system of equations gives:
ky = hks3; k; = gks
where

=BVl — )+ a)? + (S° (1P + pP(w + 2a) + aw(u + a) + a?p))]

" Np(u+ o + a)]

and

BlaS® +V°(1 —&)(u + a)]
Nlp(p + 0 + a)]

g:

Here k5 can be any real value that is not zero.

Therefore

K = |gk,

hkll
ks

Furthermore, the eigenvector W = (wy, w,, w3)T corresponding to 4, of /T can be written as:

—(u+a) a 01
W —(u + w) 0 w1 ~0
BS° BVO(1 —¢) 0 Wj B
-~

Hence, we have:

L2

Let w; be any nonzero real number. System (4) is then expressed in the vector form as follows:

ax

=/
where X = (S,V,I)Tand f = (f, fo, f3) With f;,i = 1,2,3 as presented in system (4), thus, by determining
% = f5, we obtain that:
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0 0 O 0
p=fpo o|-|o]
0 0 -I -1

Then

0
fs(E®,80) = H
0

Therefore
WT. f5(E®8,) =0
Thus, based on the Sotomayor theorem, at 8, the system does not exhibit a Saddle-node bifurcation around E°.

To analyze the possible emergence of different types of bifurcation, the Jacobian matrix Df; is evaluated at the
disease-free equilibrium point (E°, §,), with respect to the state variables in vector X.

0 0 O
Dfs(E®, 6,) = [0 0 O l
0 0 -1

SO
WT. [Df(g(EO, 50).1{] = _k3W3 * 0

Furthermore, based on Sotomayor's theorem, given that the following results are true, in addition to what has been
previously established

WT.[Df(E®, 8). (K, k)] # 0

In this case, Df (E°, &,) represents the Jacobian matrix evaluated at E° and &, as a result, system (4) exhibits a
transcritical bifurcation, but a pitch-fork bifurcation is unlikely. given that it is known as:

—2Bh
e
(D7 (B, 00). (k)] = | P90 =8
2B(h+g(1—¢)) L2
N 3

Therefore

2B(h + Z(l —£)) K2 £0

WT.[D*f(E®, 80). (K, k)] =

Hence, whenever the parameter § crosses through the bifurcation value &,, system (4) exhibits a transcritical
bifurcation in the neighborhood of E°.

The Hopf-bifurcation analysis of system (4)

A Hopf-bifurcation occurring close to the endemic equilibrium point is investigated in this section.

A;, i = 1,2,3, are positive if condition (13.a) has been satisfied, according to the coefficients of the characteristic
equation determined by a local stability analysis of system (4) around E*. On the other hand, A= 4,4, — A5 is
positive if condition (13.b) has been satisfied, and therefore, according to the theorem of Hopf-bifurcation [27],
a Hopf-bifurcation does not occur in this case. The absence of a Hopf bifurcation in this model carries significant
epidemiological implications. It indicates that the measles transmission dynamics, under the studied parameters,
do not exhibit sustained oscillations or recurrent epidemic waves. This means that once the system stabilizes
whether in a disease-free or endemic state—it tends to remain in that state without periodic unexpected
fluctuations. Such dynamic stability facilitates long-term control strategy planning, as disease behavior becomes
more predictable.
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Numerical analysis

The current section aims to investigate the overall dynamic behavior of the system (1) through numerical
simulations. The temporal evolution of all epidemiological compartments, namely the susceptible S(t), vaccinated
V(t), infected I(t), and recovered R(t), is illustrated by solving the system over a finite time interval.is illustrated
by solving the system over a finite time interval, In Figure 2, the trajectories are distinguished by color, where the
susceptible population S(t) is represented by the blue curve, the vaccinated population V (t) by the green curve,
the infected population I(t) by the red curve, and the recovered population R(t) by the black curve. For the
simulations, the initial conditions were chosen as S(0) = 990,V (0) = 0,1(0) = 10, and R(0) = 0, representing
a population with a small number of initial infections. The parameter values used in the numerical analysis are

summarized in the following table.

Table 2. Parameter values used in the numerical analysis

Parameter Value Source
T 10 Assumed
B 0.3 Assumed
a 0.05 Assumed
o 0.1 [4]
u 0.01 Assumed
Uy 0.02 Assumed
w 0.02 [5,6]
£ [0,1] control parameter
= 0.2 =
T T T T (=02 T 1000 (€ = 05) . . :
Susceptible S(f)
900 Vaccinated V{(r)
Infected I(r)
800 Recovered R(1)
[—— Susceprible s)| 4 700~ .
Vaccinated V(1)

100
Time (days)

(@)

20 40 60 80

T
120

= Infected I(1) 4
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1 L
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Figure 2. Time evolution of the SVIR compartments for different values of vaccine efficacy e.

The results demonstrate that increasing vaccine efficacy significantly reduces the number of infected individuals
over time. In particular, as ¢ approaches unity, the probability of infection among vaccinated individuals
decreases, leading to a substantial decline in the infected population.
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Results and discussion

The mathematical analysis conducted in this study provides important insights into the impact of vaccination
on measles transmission dynamics. The presence of a transcritical bifurcation near the disease-free equilibrium
indicates a critical threshold that governs the transition between disease elimination and persistence, highlighting
the importance of maintaining high vaccination coverage and efficacy to ensure disease control. In contrast, no
Hopf bifurcation was detected in the model, indicating the absence of sustained oscillations or recurrent epidemic
waves at equilibrium points, which reflects the stability of the system under the current conditions. This means
that any short-term fluctuations in infection numbers tend to dissipate quickly, making the long-term behavior of
the disease more predictable. Furthermore, the absence of both saddle-node and pitchfork bifurcations supports
the structural stability of the model under small perturbations. Epidemiologically, this implies that measles tends
to stabilize either in a disease-free state or a relatively steady endemic state, unless critical parameters such as
vaccine efficacy or coverage undergo substantial changes a consideration of particular importance given the
phenomenon of waning immunity over time.

Numerical simulations confirmed these analytical results, showing that increased vaccine efficacy leads to a
significant reduction in the number of infections, while decreased vaccine efficacy due to waning immunity
increases the size of the susceptible population even in highly vaccinated communities. When vaccine efficacy
approaches its maximum value, the probability of infection among vaccinated individuals decreases markedly,
underscoring the crucial role of highly effective vaccines in controlling measles transmission.

From a public health perspective, these findings emphasize the need to design flexible vaccination policies that
include booster programs to maintain immunity levels in the population over the long term, with a focus on
sustaining high vaccination coverage and minimizing vaccine failure. Such measures ensure stability in disease
dynamics and prevent potential outbreaks, even in communities experiencing gradual declines in immunity.

Conclusion

In this study, a mathematical model was developed and analyzed to describe the transmission dynamics of
measles under the influence of vaccination. The existence and local stability of equilibrium points were rigorously
examined. Bifurcation analysis revealed the occurrence of a transcritical bifurcation in the neighborhood of the
disease-free equilibrium, while both saddle-node and pitchfork bifurcations were found to be absent. In addition,
the analysis showed that no Hopf bifurcation occurs in the proposed model, indicating the absence of sustained
oscillatory behavior near the equilibrium points. Numerical simulations supported the analytical findings and
demonstrated that increasing vaccine efficacy significantly reduces the number of infected individuals over time.
From an epidemiological perspective, these results highlight the critical role of vaccination-related parameters in
determining long-term disease control.

Future work

Finally, future extensions of the proposed SVIR model may incorporate time delays to account for the latency
period between infection and symptom onset, as well as the delay between vaccination and the acquisition of
effective immunity. Such extensions could lead to richer dynamical behaviors, including possible oscillatory
dynamics. Moreover, incorporating social and behavioral factors, such as vaccine hesitancy or heterogeneous
contact patterns, would provide a more realistic framework for assessing measles transmission and designing
effective control strategies.
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